PCSK9 inhibition and aortic stenosis
An analysis from the FOURIER trial

American College of Cardiology 2020 Scientific Sessions

TIMI Study Group
Brigham and Women’s Hospital
Harvard Medical School
Disclosures

BAB is a member of the TIMI Study Group which has received institutional research grant support through Brigham and Women's Hospital from: Abbott, Amgen, Aralez, AstraZeneca, Bayer HealthCare Pharmaceuticals, Inc., BRAHMS, Daiichi-Sankyo, Eisai, GlaxoSmithKline, Intarcia, Janssen, MedImmune, Merck, Novartis, Pfizer, Poxel, Quark Pharmaceuticals, Roche, Takeda, The Medicines Company, Zora Biosciences.

Grant support: MedImmune/AstraZeneca, Abbott Vascular
Consulting/personal fees: Servier, Quark Pharmaceuticals, Abbott Vascular, Philips, Daiichi Sankyo, Janssen Pharmaceuticals
Calcific Aortic Valve Stenosis

- **Common** (~5% prevalence in older adults)

- **Morbid** (25-50% 1-yr mortality for untreated symptomatic severe AS)

- Despite rapid evolution in valve replacement technique, there is **no disease-modifying pharmacotherapy**
Pathobiology similar to atherosclerosis?

Table 3. Clinical Factors Associated With Aortic Stenosis or Sclerosis by Stepwise Multiple Logistic Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>p Value</th>
<th>Odds Ratio</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td><0.001</td>
<td>2.18*</td>
<td>2.15, 2.20</td>
</tr>
<tr>
<td>Male gender</td>
<td><0.001</td>
<td>2.03</td>
<td>1.7, 2.5</td>
</tr>
<tr>
<td>Lp(a)</td>
<td><0.001</td>
<td>1.23†</td>
<td>1.14, 1.32</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.001</td>
<td>0.84‡</td>
<td>0.75, 0.93</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>0.002</td>
<td>1.23</td>
<td>1.1, 1.4</td>
</tr>
<tr>
<td>Present smoking</td>
<td>0.006</td>
<td>1.35</td>
<td>1.1, 1.7</td>
</tr>
<tr>
<td>LDLc (mg/dl)</td>
<td>0.008</td>
<td>1.12†</td>
<td>1.03, 1.23</td>
</tr>
</tbody>
</table>

*± 75th vs. 25th percentile. †± 10-year increase. ‡± 10-unit increase. LDLc = low density lipoprotein cholesterol; Lp(a) = lipoprotein(a).

Stewart BF. JACC. 1997;29:630-4
Three RCTs of LDL-C-lowering with statins

SALTIRE
N=155
Atorvastatin 80 mg vs PBO

SEAS
N=1873
Simva 40/Eze 10 mg vs PBO

ASTRONOMER
N=269
Rosuvastatin 40 mg vs PBO

Cowell SJ. NEJM. 2005;3522:2389-97

Rossebo AB. NEJM. 2008;359:1343-56

Chan KL. Circulation. 2010;121:306-14
GWAS for aortic valve calcification

Adjusted HR (95%CI) per risk allele

Aortic stenosis 1.68 (1.32-2.15)
AVR 1.54 (1.05-2.27)
Lp(a) is a circulating lipoprotein that consists of an “LDL-like” molecule covalently bound to apo(a)

Gencer B. Eur Heart J. 2017;38:1553-60
Lp(a) and aortic stenosis progression

Echocardiographic progression

Cardiac death or AVR

A

Progression Rate of \(V_{\text{peak}} \) (m/s/yr)

- Tertiles 1 & 2
 - Lp(a) \(\leq 58.5 \text{mg/dL} \)
 - Progression Rate: 0.17 ± 0.02
 (n = 147)
- Tertile 3
 - Lp(a) > 58.5 mg/dL
 - Progression Rate: 0.26 ± 0.03
 (n = 73)

\(p = 0.005 \)

B

Adjusted Event-Free Survival (%)

Follow-Up (Years)

- Tertiles 1 & 2 of Lp(a)
- Tertile 3 of Lp(a)

*HR = 2.0 (1.1-3.7); p = 0.02
PCSK9 genetics and Lp(a)

PCSK9 sequence variant R46L

↓ Lp(a) concentration

↓ AS incidence

Aortic valve stenosis

N = 103,083
Events = 1437
Log-rank p = 0.06

PCSK9 R46L non-carrier
PCSK9 R46L carrier

Trend p=0.02

N= 48,324
1284
9

Years of age
PCSK9 inhibition lowers Lp(a)

Median change in Lp(a) concentration at 48 weeks in the FOURIER trial

Change from Baseline (%)
Lp(a), LDL-C, and aortic stenosis

- **Pathology** findings suggesting similarity to vascular atherosclerosis
- **Epidemiological associations** between elevated Lp(a), LDL-C, and AS
- **Genetic associations** between:
 - LPA variants, ↑ Lp(a), ↑ AS incidence
 - PSCK9 variants, ↓ Lp(a), ↓ AS incidence
- **Monoclonal antibodies** against PCSK9
 - 20-30% ↓ in Lp(a)
 - 50-60% ↓ in LDL-C

DOES PCSK9 INHIBITION REDUCE AORTIC STENOSIS EVENTS?
FOURIER Trial Design

27,564 high-risk, stable patients with established CV disease (prior MI, prior stroke, or symptomatic PAD)

Screening, Lipid Stabilization, and Placebo Run-in
High or moderate intensity statin therapy (± ezetimibe)

LDL-C ≥70 mg/dL or non-HDL-C ≥100 mg/dL

RANDOMIZED DOUBLE BLIND

Evolocumab SC 140 mg Q2W or 420 mg QM

Placebo SC Q2W or QM

Follow-up Q 12 weeks

Questions

• Does evolocumab reduce AS events in patients with prior ASCVD on statin therapy?

• What are the associations between lipid concentrations [Lp(a) and LDL-C] and AS events?
Aortic stenosis events in FOURIER

- **Safety database** searched for events related to:
 - New or worsening AS; or
 - Aortic valve replacement (TAVR or SAVR)

- Search performed **blinded** to lipid levels, randomized treatment arm, clinical variables

- **63 events**
 - 26 AVR (18 surgical, 7 transcatheter, 1 unspecified)
Statistical analysis

- **Kaplan-Meier event rates** for AS events by 1-SD increase in week 12 Lp(a) and LDL-C\textsubscript{corr} [defined as LDL-C\textsubscript{corr} = LDL-C\textsubscript{meas} – 0.3 X Lp(a)]

- **Adjusted risk of AS events**
 - Model: Lp(a), LDL-C\textsubscript{corr}, age, sex, diabetes, hypertension, current smoking, eGFR

- **Evolocumab vs placebo** using Cox proportional hazards model

- **Sensitivity analysis** removing 9 patients with MACE prior to AS event
AS events per 1-SD increase in achieved lipid concentrations

Variables in model:
Lp(a), LDL-C_{corr}, age, sex, DM, HTN, current smoking, and eGFR

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR_{adj}</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lp(a)</td>
<td>1.55</td>
<td>(1.17-2.05)</td>
<td>0.002</td>
</tr>
<tr>
<td>LDL-C_{corr}</td>
<td>1.23</td>
<td>(0.93-1.61)</td>
<td>0.14</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>2.22</td>
<td>(1.38-3.58)</td>
<td>0.001</td>
</tr>
<tr>
<td>LDL-C_{corr}</td>
<td>1.39</td>
<td>(0.92-2.11)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

0.2 Lower risk of AS events 1.0 Higher risk of AS events 8.0
An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

\[\text{Evolocumab vs Placebo} \]

\[\text{HR 1.09 (0.48-2.47)} \]
\[P=0.84 \]

\[\text{Evolocumab vs Placebo} \]

\[\text{HR 0.48 (0.25-0.93)} \]
\[P=0.026 \]

Overall HR

\[\text{0.66 (0.40-1.09)} \]

Aortic Stenosis Events

Days

Number at Risk

<table>
<thead>
<tr>
<th>Group</th>
<th>At 0</th>
<th>At 180</th>
<th>At 360</th>
<th>At 540</th>
<th>At 720</th>
<th>At 900</th>
<th>At 1080</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBO</td>
<td>13780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVO</td>
<td>13784</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

- **All AS events beyond 12 months**
 - n=40
 - HR (95% CI): 0.48 (0.25-0.93)

- **Sensitivity Analysis**
 - (AS events >12 mo removing pts w/ MACE prior to AS event)
 - n=34
 - HR (95% CI): 0.35 (0.17-0.77)

- **AVR beyond 12 months**
 - n=15
 - HR (95% CI): 0.49 (0.17-1.45)
Limitations

• *Post hoc* analysis of a randomized trial without adjustment for multiple comparisons

• Few events and not adjudicated

• Presence/severity of baseline AS not known

• Detection bias a consideration, as evolocumab reduces other CV events
 – Mitigated by sensitivity analysis

• Landmark analyses subject to non-random drop-out and censoring
Conclusions

• Achieved Lp(a) concentration associated with future AS events
• Beneficial effect of evolocumab appeared to emerge after 1 year of treatment with 52% lower rate of AS events
• These exploratory findings require validation in a dedicated RCT
Thank you

bbergmark@bwh.harvard.edu
www.TIMI.org