Non-Vitamin K Antagonist Oral Anticoagulants Versus Warfarin in Atrial Fibrillation

Individual Patient Data from the Pivotal Randomized Trials

Anthony P Carnicelli, MD
On behalf of the COMBINE AF Investigators

(COllaboration between Multiple institutions to Better Investigate Non-vitamin K antagonist oral anticoagulant use in Atrial Fibrillation)
Declaration of Interest

• Grant funding from National Institutes of Health T32 Training Grant

• RE-LY was funded by Boehringer Ingelheim

• ROCKET AF was funded by Johnson & Johnson and Bayer

• ARISTOTLE and AVERROES were funded by Bristol-Myers Squibb and Pfizer

• ENGAGE AF-TIMI 48 was funded by Daiichi Sankyo
Background

RE-LY
- Completed 2009
- N=18,113
- Dabigatran 150mg
- Dabigatran 110mg
- Warfarin

ROCKET AF
- Completed 2010
- N=14,264
- Rivaroxaban (20/15mg)
- Warfarin

AVERROES
- Completed 2010
- N=5,599
- Apixaban (5/2.5mg)
- Aspirin alone

ARISTOTLE
- Completed 2011
- N=18,201
- Apixaban (5/2.5mg)
- Warfarin

ENGAGE AF-TIMI 48
- Completed 2013
- N=21,105
- Edoxaban 60/30mg
- Edoxaban 30/15mg
- Warfarin

FDA-labeled NOAC dose
- N=32,170

Non-FDA-labeled NOAC dose
- N=13,049

Dose adjusted warfarin
- N=29,272

Aspirin alone
- N=2,791

ESC Congress 2020
The Digital Experience

Connolly SJ et al. NEJM 2011; 364:806-17.
Giugliano RP et al. NEJM 2013; 369:2093-104.
Background

2014 study-level meta-analysis

NOAC use → Lower risk of stroke/systemic embolism, intracranial hemorrhage, all-cause death

Advantages of patient level data
- Proper handling of continuous covariates
- Evaluate treatment effect across sub-groups
- Analyze rare events and small subgroups
- Large numbers of events for risk models
- Conduct robust multivariable analyses

Objectives
- Compare pooled, FDA-labeled NOACs versus warfarin for relative efficacy, safety, and composite endpoints
- Test for treatment effect modification by continuous baseline covariates age, body weight, and creatinine clearance
Methods

COMBINE AF database
N=77,282

Exclude: AVERROES patients (N=5,599)

Patients enrolled in RE-LY, ROCKET AF, ARISTOTLE, or ENGAGE AF-TIMI 48
N=71,683 (92.8%)

Exclude: patients randomized to non-FDA-labeled NOAC regimen (i.e. dabigatran 110mg in RE-LY or edoxaban 30/15mg in ENGAGE AF-TIMI 48 (N=13,049)

Final study population
N=58,634 (75.9%)

Pooled NOACs
N=29,362 (38.0%)

Pooled warfarin
N=29,272 (37.9%)

Median follow up duration:
25.8 (18.5-32.2) months
58,541 patient-years
Statistical Analysis

• Outcomes
 • Stroke or systemic embolism
 • All-cause death
 • Net clinical outcome
 • Composite stroke, systemic embolism, major bleeding, all-cause death
 • Major bleeding (ISTH)
 • Intracranial bleeding
 • Gastrointestinal bleeding

• Treatment effect modification by continuous baseline covariates
 • Stratified Cox proportional hazards models with random effects including a covariate-by-treatment interaction
 • Interaction reported as change in hazard ratio per unit increase in baseline covariate
Kaplan-Meier Curves

Stroke/Systemic Embolism

- Hazard Ratio 0.80 (95% CI 0.71-0.90); p<0.001

All-Cause Death

- Hazard Ratio 0.89 (95% CI 0.84-0.94); p<0.001

Number at Risk (number of events)

<table>
<thead>
<tr>
<th></th>
<th>Warfarin</th>
<th>NOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>29229 (0)</td>
<td>29312 (0)</td>
</tr>
<tr>
<td>6</td>
<td>28027 (336)</td>
<td>28256 (231)</td>
</tr>
<tr>
<td>12</td>
<td>27051 (591)</td>
<td>27328 (431)</td>
</tr>
<tr>
<td>18</td>
<td>21654 (786)</td>
<td>21907 (602)</td>
</tr>
<tr>
<td>24</td>
<td>15324 (944)</td>
<td>15595 (761)</td>
</tr>
<tr>
<td>30</td>
<td>8870 (1031)</td>
<td>9027 (837)</td>
</tr>
</tbody>
</table>

Number at Risk (number of events)

<table>
<thead>
<tr>
<th></th>
<th>Warfarin</th>
<th>NOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>29229 (0)</td>
<td>29312 (0)</td>
</tr>
<tr>
<td>6</td>
<td>28302 (512)</td>
<td>28462 (442)</td>
</tr>
<tr>
<td>12</td>
<td>27476 (1067)</td>
<td>27654 (956)</td>
</tr>
<tr>
<td>18</td>
<td>22120 (1587)</td>
<td>22276 (1404)</td>
</tr>
<tr>
<td>24</td>
<td>15735 (1987)</td>
<td>15951 (1794)</td>
</tr>
<tr>
<td>30</td>
<td>9139 (2289)</td>
<td>9271 (2080)</td>
</tr>
</tbody>
</table>
Kaplan-Meier Curves

Major Bleeding

- **Warfarin**: Hazard Ratio 0.86 (95% CI 0.74-1.01); p=0.065
- **NOAC**: Hazard Ratio 0.86 (95% CI 0.74-1.01); p=0.065

Intracranial Bleeding

- **Warfarin**: Hazard Ratio 0.45 (95% CI 0.36-0.58); p<0.001
- **NOAC**: Hazard Ratio 0.45 (95% CI 0.36-0.58); p<0.001

Number at Risk (number of events)

<table>
<thead>
<tr>
<th>Warfarin</th>
<th>NOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>29187 (0)</td>
<td>29270 (0)</td>
</tr>
<tr>
<td>25639 (572)</td>
<td>25375 (521)</td>
</tr>
<tr>
<td>23562 (992)</td>
<td>23456 (877)</td>
</tr>
<tr>
<td>18382 (1311)</td>
<td>18258 (1117)</td>
</tr>
<tr>
<td>12618 (1555)</td>
<td>12577 (1321)</td>
</tr>
<tr>
<td>7009 (1886)</td>
<td>7050 (1434)</td>
</tr>
</tbody>
</table>

Number at Risk (number of events)

<table>
<thead>
<tr>
<th>Warfarin</th>
<th>NOAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>29187 (0)</td>
<td>29270 (0)</td>
</tr>
<tr>
<td>25900 (132)</td>
<td>25624 (55)</td>
</tr>
<tr>
<td>23995 (219)</td>
<td>23863 (107)</td>
</tr>
<tr>
<td>18854 (306)</td>
<td>18685 (133)</td>
</tr>
<tr>
<td>13037 (369)</td>
<td>12986 (159)</td>
</tr>
<tr>
<td>7299 (398)</td>
<td>7317 (179)</td>
</tr>
</tbody>
</table>
Kaplan-Meier Curves

Gastrointestinal Bleeding

- **Warfarin**
 - Number at Risk (number of events):
 - 29187 (0)
 - 25792 (160)
 - 23804 (269)
 - 18677 (330)
 - 12906 (377)
 - 7226 (395)
- **NOAC**
 - Number at Risk (number of events):
 - 29270 (0)
 - 25393 (335)
 - 23577 (436)
 - 18413 (508)
 - 12791 (564)
 - 7206 (588)

Hazard Ratio
- 1.58 (95% CI 1.39-1.79); p<0.001

Net Clinical Outcome

- **Warfarin**
 - Number at Risk (number of events):
 - 29187 (0)
 - 25567 (999)
 - 23446 (1744)
 - 18260 (2327)
 - 12504 (2758)
 - 6946 (3012)
- **NOAC**
 - Number at Risk (number of events):
 - 29270 (0)
 - 25323 (890)
 - 23378 (1555)
 - 18178 (2040)
 - 12502 (2445)
 - 6996 (2666)

Hazard Ratio
- 0.89 (95% CI 0.83-0.94); p<0.001

Net clinical outcome = composite stroke, systemic embolism, major bleeding, all-cause death
Interaction Testing

Stroke or Systemic Embolism

- **Age**: HR > 1 favors warfarin, HR < 1 favors NOACs
 - Hazard Ratio decreases 5.0% (1.6% - 8.4%) per 10 mL/min decrease in CrCl
- **Body Weight**: HR > 1 favors warfarin, HR < 1 favors NOACs
- **Creatinine Clearance**: HR > 1 favors warfarin, HR < 1 favors NOACs
 - Hazard Ratio decreases 5.0% (1.6% - 8.4%) per 10 mL/min decrease in CrCl

Graphs

- Age (years) at baseline
- Body weight (kg) at baseline
- Creatinine clearance (mL/min) at baseline

Statistical Significance

- p-int = 0.130
- p-int = 0.110
- p-int = 0.005
Hazard Ratio decreases 8.8% (0.8% - 16.1%) per 10 year decrease in age

Hazard Ratio decreases 5.2% (1.7% - 8.5%) per 10 kg decrease in weight
Interaction Testing

All-Cause Death

Age
- Hazard Ratio decreases 3.1% (0.01% - 6.0%) per 10 kg decrease in weight

Body Weight
- Hazard Ratio decreases 3.1% (0.8% - 5.3%) per 10 mL/min decrease in CrCl
Summary

• Sharing of de-identified data across multiple international coordinating centers provides a unique model for academic collaboration
 • COMBINE AF will serve as an important resource for many future collaborative analyses

• NOAC use results in consistently lower rates of stroke, death, and intracranial hemorrhage compared with warfarin across most subgroups

• For continuous baseline covariates age, body weight, creatinine clearance there was evidence of statistical interaction regarding treatment effect for various outcomes
 • For example, the benefit of NOAC over warfarin with respect to stroke was more pronounced in patients with lower creatinine clearance

• These data further support the value of NOACs over warfarin for a broad population of patients with atrial fibrillation
THANK YOU!

Executive Committee

Stuart Connolly, MD
John Eikelboom, MBBS

Lars Wallentin, MD, PhD
Christopher Granger, MD
Manesh Patel, MD

Robert Giugliano, MD, SM

Steering Committee

Duke Clinical Research Institute
- Anthony Carnicelli, MD
- John Alexander, MD, MHS
- Renato Lopes, MD, PhD
- Jonathan Piccini, MD, MHS

Uppsala Clinical Research Center
- Jonas Oldgren, MD, PhD
- Ziad Hijazi, MD, PhD

Mount Sinai Medical Center
- Jonathan Halperin, MD

University Heart Center Zurich
- Jan Steffel, MD

Taipei Veterans General Hospital
- Tze-Fan Chao, MD, PhD

Kyoto University Hospital
- Eri Toda Kato, MD, PhD

University of Edinburgh
- Keith AA Fox, MD

TIMI Study Group
- David Morrow, MD, MPH
- Erin Bohula, MD, DPhil
- Christian Ruff, MD, MPH

Boston University School of Medicine
- Elaine Hylek, MD, MPH

Lankenau Institue for Medical Research
- Michael Ezekowitz, MB, ChB, DPhil

Stanford University
- Kenneth Mahaffey, MD

Daiichi Sankyo
- Cathy Chen, MD

Janssen
- JoAnne Foody, MD

INECO Neurociencias Oroño
- Cecilia Bahit, MD

Bristol Myers Squibb
- Christian Klem, PharmD

Boehringer Ingelheim
- Joanne van Ryn, PhD
- Jutta Heinrich-Nols, MD
- Eva Kleine, MSc

Bayer
- Scott Berkowitz, MD