Cardiovascular Outcomes in Patients with Established Atherosclerosis and LDLR Loss of Function: Results from the FOURIER Trial

Nicholas A. Marston, MD, MPH*, James Pirruccello, MD*, Giorgio Melloni, PhD, Frederick K. Kamanu, PhD, Seung Hoan Choi, PhD, Anthony Philippakis, MD, PhD, Peter S. Sever, PhD, FRCP, Anthony C. Keech, MD, Armando Lira Pineda, MD, Huei Wang, PhD, Robert P. Giugliano, MD, SM, Steven A. Lubitz, MD, MPH, Patrick Ellinor, MD, PhD*, Marc S. Sabatine, MD, MPH*, Christian T. Ruff, MD, MPH*

(*contributed equally)
Disclosures

Presenter: clinical trial involvement with Amgen, Pfizer, Novartis, and AstraZeneca without personal fees, payments, or salary increase.

Co-Authors: JP is supported by a John S LaDue Memorial Fellowship. Paid consultant for Maze Therapeutics. GM and FKK are members of the TIMI Study Group which has received institutional research grant support through Brigham and Women’s from: Abbott, Amgen, Aralez, AstraZeneca, Bayer HealthCare Pharmaceuticals, Inc., BRAHMS, Daiichi-Sankyo, Eisai, GlaxoSmithKline, Intarcia, Janssen, MedImmune, Merck, Novartis, Pfizer, Poxel, Quark Pharmaceuticals, Roche, Takeda, The Medicines Company, Zora Biosciences. SHC reports no disclosures. AP is a venture partner at GV. PS reports research grants and honoraria for speakers bureau- Amgen and Pfizer. ACK reports grants and personal fees from Abbott, personal fees from Amgen, personal fees from AstraZeneca, grants and personal fees from Mylan, personal fees from Pfizer, grants from Sanofi, grants from Novartis, personal fees from Bayer, outside the submitted work. ALP was previously employed by Amgen, now employed by Arrowhead Pharmaceutical. HW is employed at Amgen. RPG reports grants from Amgen and Daiichi Sankyo, during the conduct of the study; personal fees from Akcea, grants and personal fees from Amarin, personal fees from American College of Cardiology; grants and personal fees from Amgen, personal fees personal fees from Bristol Myers Squibb, personal fees from CVS Caremark, grants and personal fees from Daiichi Sankyo, personal fees from GlaxoSmithKline, personal fees from Janssen, personal fees from Lexicon, grants and personal fees from Merck, personal fees from Pfizer, personal fees from Servier, outside the submitted work; and Institutional research grant to the TIMI Study Group at Brigham and Women’s Hospital for research he is not directly involved in from Abbott, Amgen, Aralez, AstraZeneca, Bayer HealthCare Pharmaceuticals, Inc., BRAHMS, Daiichi Sankyo, Eisai, GlaxoSmithKline, Intarcia, Janssen, MedImmune, Merck, Novartis, Pfizer, Poxel, Quark Pharmaceuticals, Roche, Takeda, The Medicines Company, Zora Biosciences. SAL is supported by NIH grant 1R01HL139731 and American Heart Association 18SFRN34250007. Dr. Lubitz receives sponsored research support from Bristol Myers Squibb / Pfizer, Bayer AG, and Boehringer Ingelheim, and has consulted for Bristol Myers Squibb / Pfizer and Bayer AG. PTE reports grants and personal fees from Bayer AG, personal fees from Novartis, personal fees from Quest Diagnostics, outside the submitted work. MSS reports research grant support through Brigham and Women’s Hospital from Amgen; AstraZeneca; Bayer; Daiichi-Sankyo; Eisai; GlaxoSmithKline; Intarcia; Janssen Research and Development; Medicines Company; MedImmune; Merck; Novartis; Pfizer; Poxel; Quark Pharmaceuticals; Takeda (All >$10,000 per year); Consulting for Amgen; Anthos Therapeutics; AstraZeneca; Bristol-Myers Squibb; CVS Caremark; DaiCor; Dynamix; Esperion; IFM Therapeutics; Intarcia; Ionis; Janssen Research and Development; Medicines Company; MedImmune; Merck; Novartis (all ≤$10,000 per year except Amgen, Esperion & Ionis); Dr. Sabatine is a member of the TIMI Study Group, which has also received institutional research grant support through Brigham and Women’s Hospital from: Abbott, Aralez, Roche, and Zora Biosciences. CRT reports grants from Boehringer Ingelheim, grants from Daiichi Sankyo, grants from MedImmune, grants from National Institute of Health, personal fees from Bayer, personal fees from Bristol Myers Squibb, personal fees from Boehringer Ingelheim, personal fees from Daiichi Sankyo, personal fees from Janssen, personal fees from MedImmune, personal fees from Pfizer, personal fees from Portola, personal fees from Anthos, outside the submitted work; Dr. Ruff is a member of the TIMI Study Group, which has received institutional research grant support through Brigham and Women’s Hospital from: Abbott, Amgen, Aralez, AstraZeneca, Bayer HealthCare Pharmaceuticals, Inc., BRAHMS, Daiichi-Sankyo, Eisai, GlaxoSmithKline, Intarcia, Janssen, MedImmune, Merck, Novartis, Pfizer, Poxel, Quark Pharmaceuticals, Roche, Takeda, The Medicines Company, Zora Biosciences.
Approximately 1:500 (0.2%) individuals carry a loss of function (LoF) mutation in the LDL receptor (LDLR) gene.

These individuals have lifelong elevations in LDL-C, putting them at greater risk of cardiovascular disease.

The importance of such mutations in patients with established atherosclerosis, and their interaction with polygenic risk is not clear.

We aimed to:

1. Determine the risk of coronary events in patients with LDLR LoF compared with those with intact LDLR function.

2. Evaluate whether polygenic risk for CAD adds to monogenic risk in this secondary prevention clinical trial cohort.
Methods

• We performed a prospective genetic cohort analysis from the FOURIER trial, including all 14,297 patients who consented for genetic testing, passed QC, and were of European ancestry.

• All patients had established ASCVD and were on moderate or high intensity statin therapy.

• The primary endpoint was major coronary events, a composite of:
 • CHD death
 • Myocardial infarction
 • Coronary revascularization
Methods: Defining Monogenic and Polygenic Risk

- Whole exome sequencing was performed and LoF mutations in LDLR were identified using LOFTEE, a tool for detecting protein-truncating variants.

- Polygenic risk for CAD was calculated for each patient using a previously validated 27-SNP genetic risk score*.
 - high genetic risk \(\geq \) the median
 - low genetic risk \(<\) the median

Results: Baseline Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>LDLR LoF N = 111 (0.8%)</th>
<th>Wild Type N = 14186</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>56 ± 10</td>
<td>63 ± 9</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>76%</td>
<td>76%</td>
<td>0.44</td>
</tr>
<tr>
<td>Baseline BMI (kg/m²)</td>
<td>29 ± 6</td>
<td>30 ± 5</td>
<td>0.48</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior Myocardial Infarction</td>
<td>86%</td>
<td>82%</td>
<td>0.35</td>
</tr>
<tr>
<td>History of Coronary Revascularization</td>
<td>82%</td>
<td>69%</td>
<td>0.003</td>
</tr>
<tr>
<td>History of Cerebrovascular Disease</td>
<td>22%</td>
<td>22%</td>
<td>0.96</td>
</tr>
<tr>
<td>Diabetes</td>
<td>24%</td>
<td>24%</td>
<td>1.00</td>
</tr>
<tr>
<td>Baseline Laboratory Value (mg/dL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL-C</td>
<td>160 ± 45</td>
<td>98 ± 27</td>
<td><0.001</td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td>233 ± 51</td>
<td>175 ± 32</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL</td>
<td>45 ± 13</td>
<td>47 ± 13</td>
<td>0.20</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>140 ± 75</td>
<td>151 ± 70</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Results: Major Coronary Events stratified by LDLR Loss of Function Mutation Status

HR adjusted for age + sex

HR 1.71
(1.04, 2.81)
p=0.03
Results: Major Coronary Events stratified by LDLR Loss of Function Mutation Status and Polygenic Risk for CAD

2.5-year follow up
Limitations

• LDLR mutations are rare, and therefore the number of patients identified in this study is limited

• Since all patients in FOURIER have established atherosclerosis and are on intensive lipid-lowering therapy, the effects of LDLR LoF may be more attenuated than they would be in a primary prevention population
Conclusions

• The FOURIER trial was enriched for individuals with LDLR LoF mutations, with a 4-fold greater prevalence than the general population.

• Among patients with ASCVD, those with LDLR LoF mutations were 7 years younger than those with normal LDLR function.

• Patients with LDLR LoF mutations had persistently elevated LDL-C and increased CV risk despite intensive statin therapy.

• The combination of a monogenic LDLR mutation with high polygenic risk for CAD appeared additive in this secondary prevention cohort.