Relationship Between Baseline LDL-C and %LDL-C Reduction with Evolocumab in the FOURIER Trial

Daniel P. Marcusa, MD,1 Robert P. Giugliano, MD, SM,2 Jeong-Gun Park, PhD,2 Peter S. Sever, PhD,3 FRCP, Huei Wang, PhD,4 Andrew Hamer, MD,4 Terje R. Pedersen,5 MD, Anthony C. Keech, MD,6 Marc S. Sabatine, MD, MPH2

1Department of Medicine, Brigham and Women’s Hospital
2TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital
3International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London
4Amgen, Thousand Oaks, CA
5Oslo University Hospital, Ullevål and Medical Faculty, University of Oslo
6Sydney Medical School, National Health and Medical Research Council Clinical Trials Centre, University of Sydney

Abstract: 13200
Financial Disclosure

- **Daniel P. Marcusa, MD:** None

- R.P.Giugliano: Honoraria; Modest; Astra Zeneca, CVS Caremark, CryoLife, Esperion, Gilead, GlaxoSmithKline, Samsung, Servier, Honoraria; Significant; Amgen, Amarin, Daiichi Sankyo, Research Grant; Modest; Anthos Therapeutics, Research Grant; Significant; Amgen, Speaker/Speaker's Bureau; Modest; Servier, Speaker/Speaker's Bureau; Significant; Amgen, Daiichi Sankyo.

- J.Park: Research Grant; Significant; Abbott Laboratories, Amgen, AstraZenica, Critical Diagnostics, Daiichi-Sankyo, Eisai, Genzyme, Gilead, GlaxoSmithKline, Intarcia, Janssen Research and Development, Medicines Company, MedImmune, Merck, Novartis, Pfizer, Poxel, Roche Diagnostics, Takeda.

- P.Sever: n/a.

- H.Wang: Employment; Significant; Amgen, Inc.

- A.Hamer: Employment; Significant; Amgen Inc, Stock Shareholder; Significant; Amgen Inc.

- A.C.Keech: Honoraria; Modest; Amgen, Abbott, Sanofi, Novartis, Other; Modest; Mylan, Novartis, Speaker/Speaker's Bureau; Modest; AstraZeneca, Pfizer.

- M.S.Sabatine: Other; Modest; Anthos Therapeutics, AstraZeneca, Bristol-Myers Squibb, CVS Caremark, DalCor, IJM Therapeutics, Intarcia, Medicines Company, MedImmune, Merck, Other; Significant; Amgen, Research Grant; Significant; Amgen, AstraZeneca, Bayer, Daiichi-Sankyo, Eisai, Intarcia, Medicines Company, MedImmune, Merck, Novartis, Pfizer, Quark Pharmaceuticals.
Background

• Statins, ezetimibe and PCSK9 inhibitors are commonly used to lower LDL-C and therefore to lower ASCVD risk

• Intensity of lipid lowering therapy is defined by %LDL-C reduction

• It is commonly assumed %LDL-C lowering is intrinsic to a drug with little variation by patient characteristics

Objective

• To evaluate association between baseline LDL-C and %LDL-C reduction with a statin, ezetimibe and a PCSK9 inhibitor
Methods and Materials

3 double-blind, placebo-controlled RCTs of lipid-lowering therapies

- 4497 patients w/in 5 days of ACS
 Total chol <250 mg/dl + statin-naive
 - Analyses restricted to patients on study drug with LDL-C values at baseline and follow-up timepoint (1 month for simvastatin & ezetimibe; 3 months for evolocumab).

- 18,144 patients w/in 10 days of ACS
 LDL-C 50-125mg/dl
 - Analyses restricted to patients on study drug with LDL-C values at baseline and follow-up timepoint (1 month for simvastatin & ezetimibe; 3 months for evolocumab).

- 27,564 w/ stable ASCVD on statin
 LDL-C ≥70 or non-HDL-C ≥100mg/dl
 - Analyses restricted to patients on study drug with LDL-C values at baseline and follow-up timepoint (1 month for simvastatin & ezetimibe; 3 months for evolocumab).

%LDL-C calculated as follows: used generalized linear regression to model achieved LDL-C as function of baseline LDL-C in each arm of each trial; %LDL-C reduction estimated from the difference between treatment and placebo achieved LDL-C.
Study Population

<table>
<thead>
<tr>
<th>Lipid Lowering Agent</th>
<th>A to Z – TIMI 21</th>
<th>IMPROVE-IT</th>
<th>FOURIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simvastatin</td>
<td>3187</td>
<td>10,680</td>
<td>25,847</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolocumab</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| N in analysis population | 3187 | 10,680 | 25,847 |

| Age, median (IQR), yrs | 61 | 62 | 63 |

| Female (%) | 23 | 23 | 24 |

| Caucasian (%) | 86 | 83 | 85 |

| Diabetes Mellitus (%) | 20 | 21 | 36 |

| Baseline LDL-C, median (IQR), mg/dL | 113 (95-131) | 83 (67-99) | 91.5 (79.5-108.5) |

| Achieved LDL-C in placebo arm, median (IQR), mg/dL | 124 (105-145) | 62 (51-76) | 88 (75-106) |

| Achieved LDL-C in treatment arm, median (IQR), mg/dL | 67 (53 – 82) | 45 (36-57) | 28 (19-43) |
%LDL-C Lowering By Baseline LDL-C

- Ezetimibe: Δ 1.2%
- Simvastatin: Δ 3.2%
- Evolocumab: Δ 6.6%
FOURIER %LDL-C Lowering, Stratified By Statin

%LDL-C Reduction

High-intensity statin

Moderate-intensity statin
Possible Mechanism

- In the setting of lower intrahepatic LDL-C, SREBP-2 is upregulated.
- Higher levels of SREBP-2 → ↑ synthesis of both the LDL receptor and, as a counter-regulatory brake, PCSK9.
- In that setting, PCSK9 inhibition may lead to particularly greater LDL receptor activity.
Limitations

• A-to-Z and IMPROVE-IT both enrolled immediately post-ACS, whereas FOURIER did not

• Although baseline LDL-C associated with magnitude of % LDL-C reduction, cannot prove causality; other factors could also be at play

• Observations should be repeated in studies with other PCSK9 inhibitors to confirm class-effect
Conclusion

- Lower baseline LDL-C is associated with 6.6% absolute greater LDL-C reduction for evolocumab

- These data are encouraging for reaching the progressively lower LDL-C targets that are being set