Efficacy and Safety of Non-Vitamin-K Antagonist Oral Anticoagulants vs. Warfarin Across Body Mass Index and Body Weight: Insights from COMBINE-AF

Siddharth M. Patel,1 Jan Steffel,2 Giuseppe Boriani,3 Michael G. Palazzolo,1 Erin A. Bohula,1 Anthony P. Carnicelli,4 Stuart J. Connolly,5 John Eikelboom,5 Baris Gencer,6 Christopher B. Granger,7 David A. Morrow,1 Manesh R. Patel,7 Lars Wallentin,8 Christian T. Ruff,1 Robert P. Giugliano1

1TIMI Study Group, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; 2University of Zurich, Zurich, Switzerland; 3University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy; 4Medical University of South Carolina, Charleston, SC; 5Population Health Research Institute, Hamilton Health Sciences, Ontario Canada; 6Geneva University Hospitals, Geneva, Switzerland; 7Duke Clinical Research Institute, Duke University, Durham, NC; 8Uppsala Clinical Research Center, Uppsala University, Sweden.

BACKGROUND
- NOACs preferred over W to prevent stroke in pts w/ AF.
- Guidelines & consensus statements advise caution with NOACs in obese pts → concern of lower drug exposure causing increased stroke risk.
- Conflicting data on outcomes across BMI/wgt; some studies suggest an “obesity paradox” → obese AF pts have better outcomes vs non-obese.
- Pt-level level data from COMBINE-AF (ARISTOTLE, ENGAGE AF-TIMI 48, RE-LY, ROCKET-AF) analyzed.
- Lower-dose NOACs (Dabi 110, Edox 30/15) not approved for clinical use excluded.
- Outcomes analyzed across BMI & wgt by Cox models stratified by trial; interaction term for treatment by and BMI or treatment by and BMI or interaction term for BMI exposure causing increased stroke risk.
- Characteristics well-balanced by Rx across BMI groups.
- Stroke/SEE ↓ monotonically w/ NOAC and W as BMI ↑ (Fig 1).

METHODS
- Of 57,866 pts, 39% and 5% had BMIs ≥ 30 and ≥ 40 kg/m².
- Pts w/ higher BMI (≥40 vs. <25 kg/m²) were:
 o 9 yrs younger on average (65 vs. 74 yrs)
 o Had more CV risk factors (HTN: 95% vs. 80%, DM: 55% vs. 20%), but lower rates of prior stroke/TIA (18% vs 35%), p <0.001 for each.
- Characteristics well-balanced by Rx across BMI groups.
- Stroke/SEE ↓ monotonically w/ NOAC and W as BMI ↑ (Fig 1).

RESULTS (Continued)
- Overall, NOAC ↓ stroke/SEE by 19% vs W, w/ Rx effect consistent across range of BMI (Fig 1).
- ISTH major bleeding ↓ monotonically w/ ↑ BMI with W, but rates similar across BMI for NOAC (Fig 2).
- Overall, NOAC ↓ major bleeding by 14% vs W, esp in lower BMI pts (Fig 2).
- ICH ↓ with higher BMI for both NOAC and W.
- Overall, NOAC ↓ ICH by 55% vs W, with highly consistent Rx effect across BMI (Fig 3).
- NCO ↓ monotonically for W, but ↑ w/ NOAC at very high BMIs (Fig 3).
- Overall, NOAC ↓ NCO by 9% (Fig 4), but at BMI ≥40 kg/m², NCO favored W (HR 1.28 [95% CI 1.04-1.58]), driven by excess mortality (3.6% vs. 2.8%/y) with NOAC.
- Excess in deaths driven by SCD (39% vs 26%) & HF death (19% vs 7%); no differences in vascular death (inclusive of ischemic and bleeding events; 5% vs. 7%).
- Findings similar when assessed by wgt.

CONCLUSIONS
- ↓ event rates in obese AF pts may be due to differences in characteristics across BMI (e.g., age).
- NOACs ↓ stroke/SEE, major bleeding, and ICH across range of BMI & wgt.
- NOACs ↓ risk of NCO, except possibly in pts w/ BMI ≥40 (but not due to higher rates of ischemic or bleeding events).
- Thus, NOACs seem generally preferable to W across BMI & wgt.
- Further data needed to better understand findings on mortality in pts w/ BMI ≥40 kg/m².

FIGURES
- Event Probabilities of Clinical Outcomes Across BMI
- Fig 1: Stroke/Systemic Embolic Event
- Fig 2: ISTH Major Bleeding
- Fig 3: Intracranial Hemorrhage
- Fig 4: Net Clinical Outcome

- NCO = Stroke/SEE, ISTH Major Bleeding, All-Cause Mortality
- HR 0.91 (95% CI 0.87-0.95) p<0.001