Growth Differentiation Factor-15, Clinical Outcomes, and the Effect of Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction: Insights from the DAPA-HF Trial

David D. Berg,1,2 Kieran F. Docherty,3 Atefeh Talebi,3 Naveed Sattar,3 Petr Jarolim,3 Paul Welsh,3 Pardeep S. Jhund,3 Inderjit S. Anand,4 Rudolf A. de Boer,5 Mikhail Kosiborod,6 Lars Kober,6 Felipe A. Martinez,6 Eileen O’Meara,7 Piotr Ponikowski,10 Morten Schou,11 Scott D. Solomon,2 Ann Hammarstedt,12 Anna-Maria Langkilde,17 John J.V. McMurray,3 Marc S. Sabatine,1,12 David A. Morrow1,2

1 TIMI Study Group; 2 Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; 3 BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland; 4 University of Minnesota, Minneapolis, MN; 5 Eureaka MC, Department of Cardiology, Rotterdam, the Netherlands; 6 Saint Louis’s Usa America Heart Institute, University of Missouri, Kansas City, MO; 7 Rigshospitalet Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark; 8 University of Córdoba, Córdoba, Argentina; 9 Montreal Heart Institute and Université de Montréal, Montreal, Canada; 10 Institute of Heart Diseases, Wroclaw Medical University, Poland; 11 Harver and Gertiekel University Hospital, Harver, Denmark; 12 BioPharmaceautics R&D, AstaZeneca Gothenburg, Sweden

BACKGROUND

• Growth differentiation factor-15 (GDF-15), a stress-induced cytokine associated with adverse cardiovascular outcomes, is an emerging therapeutic target in heart failure (HF).

• Little is known about the effect of SGLT2i on clinical outcomes in relation to GDF-15 and the effect of SGLT2i on circulating GDF-15 levels.

METHODS

• DAPA-HF was a randomized, placebo-controlled trial of the SGLT2i dapagliflozin in patients with NYHA class II-IV HF and LVEF ≤40% (median follow-up = 18 mo).

• Prespecified nested biomarker substudy of DAPA-HF: GDF-15 (Roche) measured at baseline in 3,103 patients and at 1 year in 2,464 patients.

• Primary composite endpoint was adjudicated on circulating GDF-15 levels.

• Hazard ratios for associations of GDF-15 with outcomes adjusted for age, sex, BMI, eGFR, T2DM, NYHA class, principal cause of HF, LVEF, NT-proBNP (log), hsTnT (log), and randomized treatment.

• Comparative effects of dapagliflozin vs. placebo on clinical outcomes assessed across quartiles of baseline GDF-15 using Cox regression with a randomized treatment-by-GDF-15 quartile interaction term.

• Effect of dapagliflozin on change in GDF-15 from baseline to 1 year explored using ANCOVA model.

RESULTS

• Median baseline GDF-15 = 1888 (IQR, 1323-2755) pg/ml

Table 1. Baseline characteristics by baseline GDF-15 level.

<table>
<thead>
<tr>
<th>GDF-15</th>
<th><Median</th>
<th>≥Median</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>64.1±10.6</td>
<td>70.4±9.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>75.2%</td>
<td>81.2%</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.0±6.1</td>
<td>28.1±5.7</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73 m²)</td>
<td>73.1±17.0</td>
<td>57.1±17.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>29.6%</td>
<td>53.0%</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>31.3±6.7</td>
<td>31.6±6.8</td>
<td>0.42</td>
</tr>
<tr>
<td>NYHA III or IV</td>
<td>26.6%</td>
<td>35.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>KCCQ-TSS</td>
<td>80.6±14.5</td>
<td>75.7±9.2</td>
<td>0.001</td>
</tr>
</tbody>
</table>

• Patients with higher GDF-15 were older, and more likely to have T2DM, lower BMI, lower eGFR, and poorer health status reflected by NYHA class and KCCQ-TSS (Table 1).

Figure 1. Adjusted outcome associations by GDF-15 quartile.

- Worsening Heart Failure or CV Death

- Adjusted HR (95% CI)

Q1: 2.3 (1.7-3.2)
Q2: 1.7 (1.2-2.3)
Q3: 1.3 (1.01-1.8)
Q4: Reference

- When GDF-15 and NT-proBNP were considered collectively, GDF-15 identified gradients of risk within quartiles of NT-proBNP (Figure 2).

- Although relative reduction in risk of worsening HF or CV death with dapagliflozin was consistent across quartiles (p-interaction = 0.96), absolute risk reduction was greater in patients with higher GDF-15 (p-trend < 0.01; Figure 3).

- Dapagliflozin did not significantly change GDF-15 levels over 1 year compared to placebo (relative LS mean change, +4% [95% CI, -2% to +10%]).

CONCLUSIONS

- Higher GDF-15 predicts greater risk of worsening HF or cardiovascular death and may identify patients with HF who derive greater absolute benefit from SGLT2i.

- The clinical benefits of dapagliflozin are not likely related to effects on GDF-15.