NT-proBNP, Body Mass Index, and Heart Failure Risk: A Pooled Analysis of SAVOR-TIMI 53, DECLARE-TIMI 58, and CAMELLIA-TIMI 61

Siddharth M. Patel, MD; David A. Morrow, MD, MPH; Andrea Bellavia, PhD; Petr Jarolim, MD, PhD; Stephen D. Wiviott, MD; Marc S. Sabatine, MD, MPH; Benjamin M. Scirica, MD, MPH; Erin A. Bohula, MD, DPhil

BACKGROUND
- Obesity = well-established risk factor for HF
- NT-proBNP = robust prognostic marker of future HF risk
 → recommended by clinical GLs for HF risk stratification
- NT-proBNP concentrations ↓ in obesity, despite ↑ HF risk
- HF risk as a function of BMI across NT-proBNP categories is incompletely defined, esp. for BMI ≥30 kg/m²

METHODS
- Population = pts enrolled in SAVOR-TIMI 53 (pbo only), DECLARE-TIMI 58 (pbo only for prognostic assoc.), and CAMELLIA-TIMI 61 with available baseline NT-proBNP
- Outcome = Hospitalization for Heart Failure (HHF)
- NT-proBNP was categorized by previously established thresholds (<125, 125-<140, and ≥140 pg/mL)
- Cox regression models were used to examine associations between NT-proBNP and HHF across BMI with adjustment for: age (cont.), sex, HTN, DM, eGFR (cont.), smoking status, established CV dz, prior HF Hx
- Rx interaction of dapagliflozin vs. pbo assessed across relevant categories of BMI and NT-proBNP

RESULTS (Continued)
- Baseline NT-proBNP was ↓ in pts w/ ≥1 BMI with a HHF event (median NT-proBNP for BMI ≥40 vs. <30: 366 vs. 723 pg/mL, p<0.001)
- There was a graded association between ↑ BMI and ↑ rate of HFH within each NT-proBNP group (p-trend<0.001 for each; Fig 1; Table 2) Notably, obese pts w/ a ≤low-level elevation in NT-proBNP (125-<450 pg/mL) had a meaningful absolute risk of HFH over 2y
- Adjusted HRRs also ↑ in a graded fashion w/ each BMI in each NT-proBNP stratum (p-trend<0.001 for each; Fig 2), with a >3-fold ↑ in HFH risk across BMI in those with low-level elevation in NT-proBNP
- All prognostic assoc. were consistent in those w/ and w/o prior HF
- Among pts w/ low-level elevation in NT-proBNP (125-<450 pg/mL) in DECLARE, there was ↑ absolute benefit w/ dapagliflozin vs. pbo at higher BMI (ARR for BMI ≥40 vs. <30: 7.2% vs. 0.8%; Fig 3)
- Only 5% of DECLARE pts w/ NT-proBNP ≥450 pg/mL had BMI≥30 (18% of all events), insufficient to support interaction testing

CONCLUSIONS
For any given range of NT-proBNP, the risk of HFH was significantly higher among those with higher BMI
Obese pts w/ low-level elevation of NT-proBNP (125-<450 pg/mL) had significantly ↑ event rate & HHF
In pts with NT-proBNP 125-<450 pg/mL, dapagliflozin reduced the risk of HFH with a pattern of ↑ ARR and ↑ RRR for HFH as BMI ↑
These findings showcase the importance of considering BMI in interpreting the risk associated with NT-proBNP concentrations for HF risk stratification

DISCLOSURE OF FACULTY RELATIONSHIPS: See supplement A 3.2 process for funding from the National Heart, Lung and Blood Institute (1300L070004). S.M.P is supported by a T32 postdoctoral training grant from the National Heart, Lung and Blood Institute (5T32HL007935-28). A.B., S.D.W., M.S.S., B.M.S., E.A.B. are members of the TIMI Study Group which has received institutional research grant support through Brigham and Women's Hospital from Abbott, Amgen, Arthros Therapeutics, ARCA Biopharmaceutical, Inc, Daiichi Sankyo, Inc., Eli Lilly, Intarcia, Ionis Pharmaceuticals, Inc., Jazz Research and Development, LLC, Medtronic, Merck, Novartis, Pfizer, Quark Pharmaceuticals, Regeneron Pharmaceuticals, Inc., and Siemens Healthcare Diagnostics, Inc. for which S.M.P has received compensation. S.M.P is also an employee of Siemens Healthcare Diagnostics, Inc. and holds stock in MedImmune, a company that is involved in the development of Dapagliflozin.