

Risk of myocardial infarction in paroxysmal vs. non-paroxysmal atrial fibrillation: an individual patient-level data analysis of 71,466 patients from COMBINE-AF

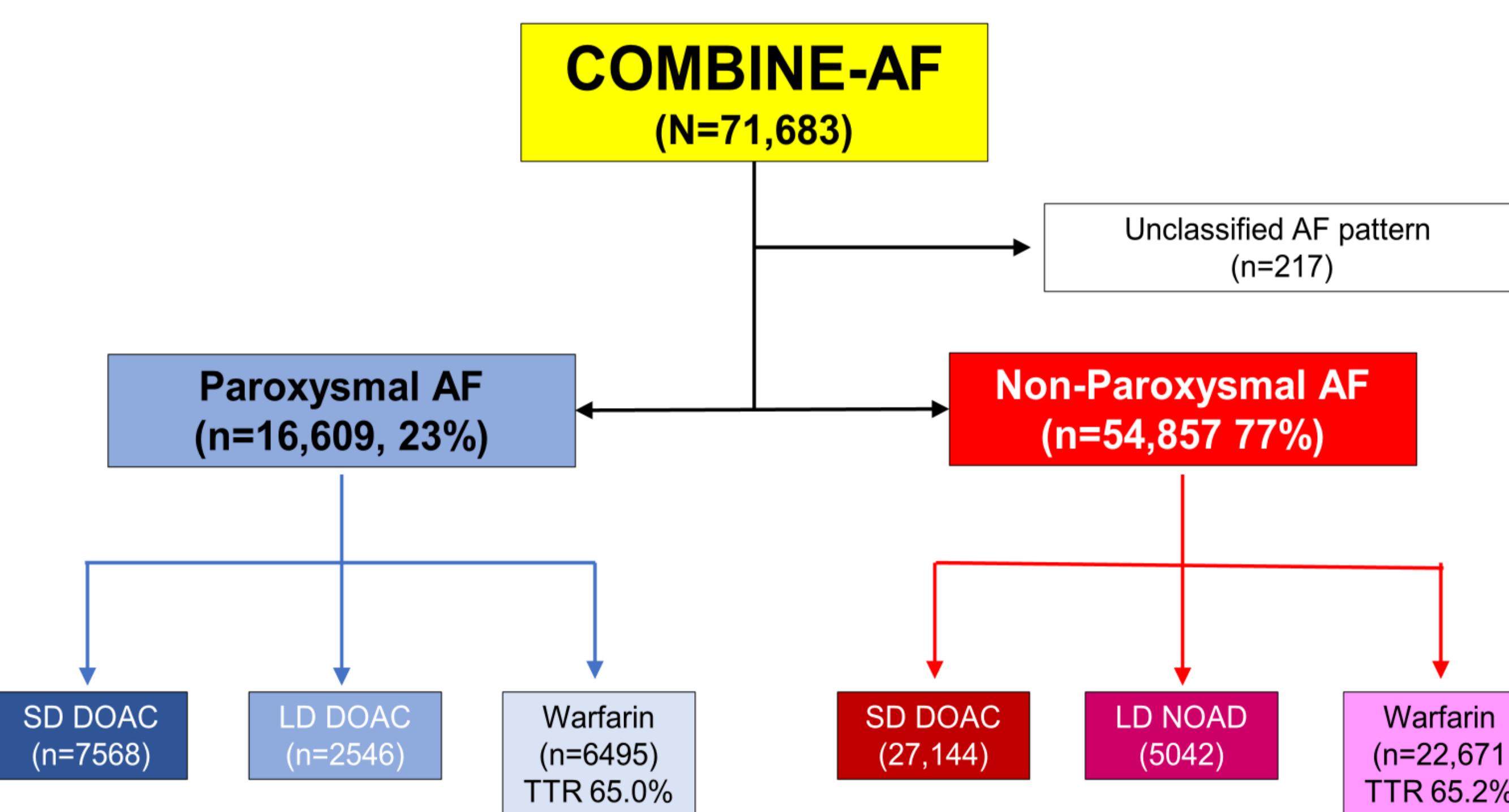
Georgios Ntaios¹, Andreas Goette², Michael Palazzolo³, Elliott Antman³, Christian Ruff³, Eugene Braunwald³, Mark Link⁴, Kenneth Mahaffey⁵, John Eikelboom⁶, Christopher Granger⁷, Manesh Patel⁷, Lars Wallentin⁸, Robert Giugliano³

1. Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; 2. Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Paderborn, Germany, Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany, MAESTRIA Consortium, AFNET, Münster, Germany; 3. TIMI Study Group, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; 4. University of Texas Southwestern Medical Center, Dallas, Texas, USA; 5. Stanford Center for Clinical Research (SCCR), Department of Medicine, Stanford School of Medicine, Stanford, CA, USA; 6. Cardiovascular Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; 7. Department of Medicine, McMaster University, Hamilton, Canada; 8. Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA; 8. Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Sweden

BACKGROUND

Prior data suggest the MI risk may be higher with paroxysmal AF (PAF) vs. non-paroxysmal AF (non-PAF). Proposed mechanisms include tachycardia-induced oxidative stress (via LOX-1) with microvascular flow abnormalities, ischemia downstream of a fixed coronary obstruction, and plaque rupture.

Our objective is to revisit this hypothesis using the larger and longer study period of the COMBINE-AF database, an individual patient-level meta-analysis of the 4 pivotal RCTs of DOAC vs warfarin.


METHODS

We compared MI rates in patients with PAF vs. non-PAF in COMBINE AF, a patient-level meta-analysis of 4 RCTs of DOACs vs warfarin (ARISTOTLE, ENGAGE AF-TIMI 48, RE-LY, ROCKET AF). Secondary endpoints were ischemic stroke and CV death. Cox proportional-hazards models stratified by trial and adjusted for elements of the CHADS-VASc score were constructed. Sensitivity analyses were performed across subgroups, omitting pts on lower-dose DOAC regimens, and accounting for competing risk of death.

Prespecified outcomes were: stroke (ischemic, hemorrhagic), systemic embolic events (SEE), major bleeding (ICH, GI, other), death, and a net clinical outcome combining these events.

RESULTS

Figure 1 – Consort Diagram

DISCLOSURES

G Ntaios reports Advisory Boards/Research support/ Speaker fees from Abbott, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Ferrer, Javelin, Novartis, Pfizer, Sanofi and Winnmedica (all paid to the University of Thessaly). A Goette: reports honoraria and speaker fees from Astra Zeneca, Bayer Health Care, Berlin-Chemie, Bristol-Myers Squibb/Pfizer, Boehringer Ingelheim, Boston Scientific, Daiichi Sankyo, Medtronic, Novartis, and Omeicos. Funding: EU Grant Horizon 2020 MAESTRIA Consortium; grant number 965286 and Josef-Freitag Stiftung und Deutsche Herzstiftung e.V. RP Giugliano: Research grant support to his institution from Anthos, Daiichi-Sankyo; Honoraria for CME programs/lectures from Daiichi Sankyo, Medical Education Resources, Menarini, SAJA, Servier; Consulting fees from Artivion, Daiichi Sankyo, Inaria, PhaseBio Pharmaceuticals, Samsung, Sanofi

Table 1 – Baseline Characteristics

Variable	Overall	PAF (N=12845)		Non-PAF (N=45578)	
		N	%	N	%
Age					
Median (IQR)	72 (65-77)	71 (65-77)	72 (65-77)		
Mean (SD)	70.4 (9.4)	70.3 (9.3)	70.5 (9.4)		
<65 years	14403 (24.7%)	3141 (24.5%)	11262 (24.7%)		
65 to <75 years	21643 (37%)	4904 (38.2%)	16739 (36.7%)		
>=75 years	22377 (38.3%)	4800 (37.4%)	17577 (38.6%)		
Female					
Female	21752 (37.2%)	5540 (43.1%)	16212 (35.6%)		
Race					
White	47134 (80.7%)	10617 (82.7%)	36517 (80.1%)		
Black	713 (1.2%)	152 (1.2%)	561 (1.2%)		
Asian	8250 (14.1%)	1440 (11.2%)	6810 (14.9%)		
Other	2325 (4%)	636 (5%)	1689 (3.7%)		
Comorbidities					
Hypertension	51365 (87.9%)	11285 (87.9%)	40080 (87.9%)		
Diabetes	18038 (30.9%)	3829 (28.9%)	14209 (31.2%)		
Current Smoker	4212 (7.2%)	903 (7%)	3309 (7.3%)		
Coronary Artery Disease	17377 (29.8%)	4234 (33%)	13143 (28.8%)		
Heart Failure	27254 (46.7%)	4715 (36.7%)	22539 (49.5%)		
Myocardial Infarction	8632 (14.8%)	2061 (16%)	6571 (14.4%)		
Valvular Disease	10847 (18.6%)	2177 (17%)	8670 (19%)		
Stroke	11099 (19%)	2276 (17.7%)	8823 (19.4%)		
Transient Ischaemic Attack	7073 (12.1%)	1806 (14.1%)	5267 (11.6%)		
Falls	2745 (4.8%)	849 (6.7%)	1896 (4.3%)		
Creatinine Clearance (mL/min) - Median (IQR)	70 (54-90.6)	70 (54-69)	70 (54-90.7)		
CHA2DS2VASc >=4	35194 (60.2%)	7573 (59%)	27621 (60.6%)		
HAS-BLED >=3	26721 (45.7%)	6409 (49.9%)	20312 (44.6%)		
Medication Use					
Aspirin	19699 (33.7%)	5202 (40.5%)	14497 (31.8%)		
NSAID (other than COX II inhibitor)	2575 (4.4%)	527 (4.1%)	2048 (4.5%)		
Statin	21653 (37.3%)	5462 (42.7%)	16191 (35.7%)		
Randomization Group					
DOAC	29257 (50.1%)	6350 (49.4%)	22907 (50.3%)		
Dose-Reduced DOAC	3671 (12.5%)	732 (11.5%)	2939 (12.8%)		
Warfarin	31966 (49.9%)	6495 (50.6%)	22671 (49.7%)		

FIG 2 – Kaplan-Meier curves for the outcomes of myocardial infarction (left panel), ischemic stroke (middle panel) and cardiovascular death (right panel) in 16,609 patients with PAF vs. 54,857 with non-PAF

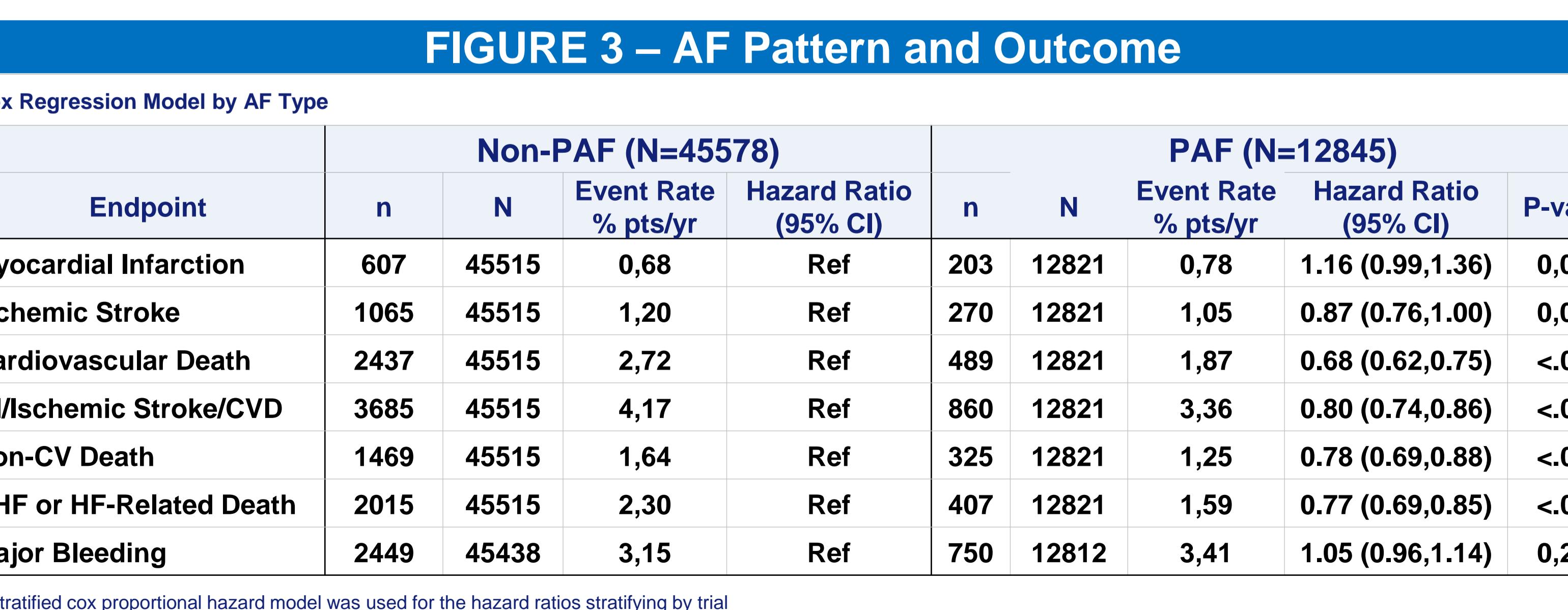
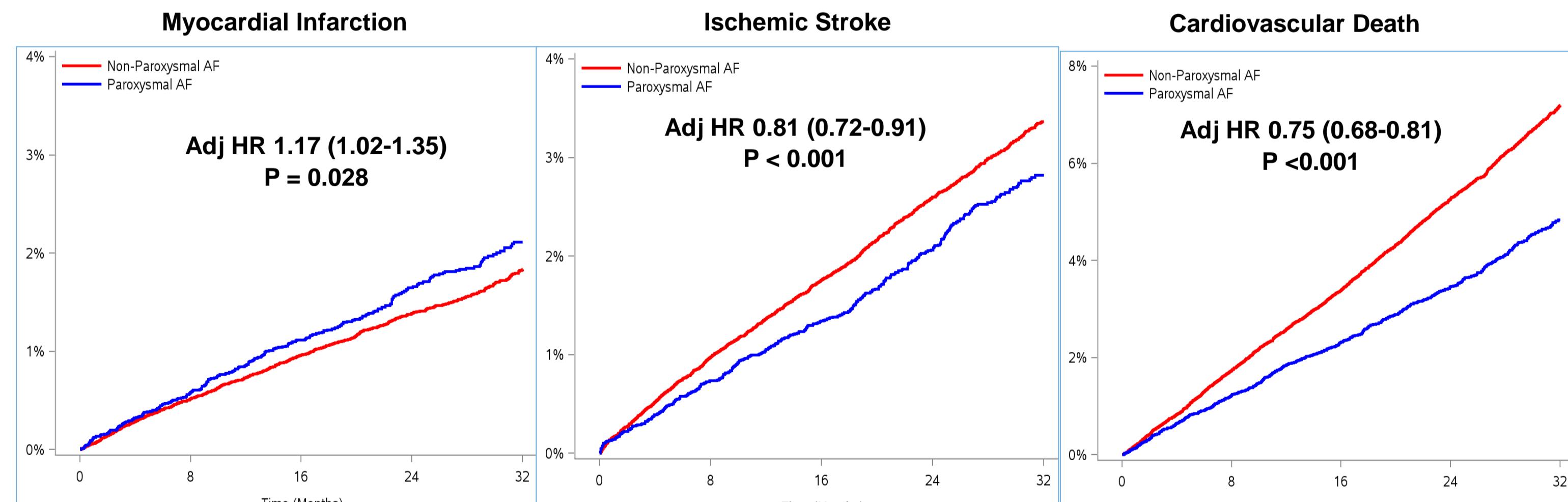
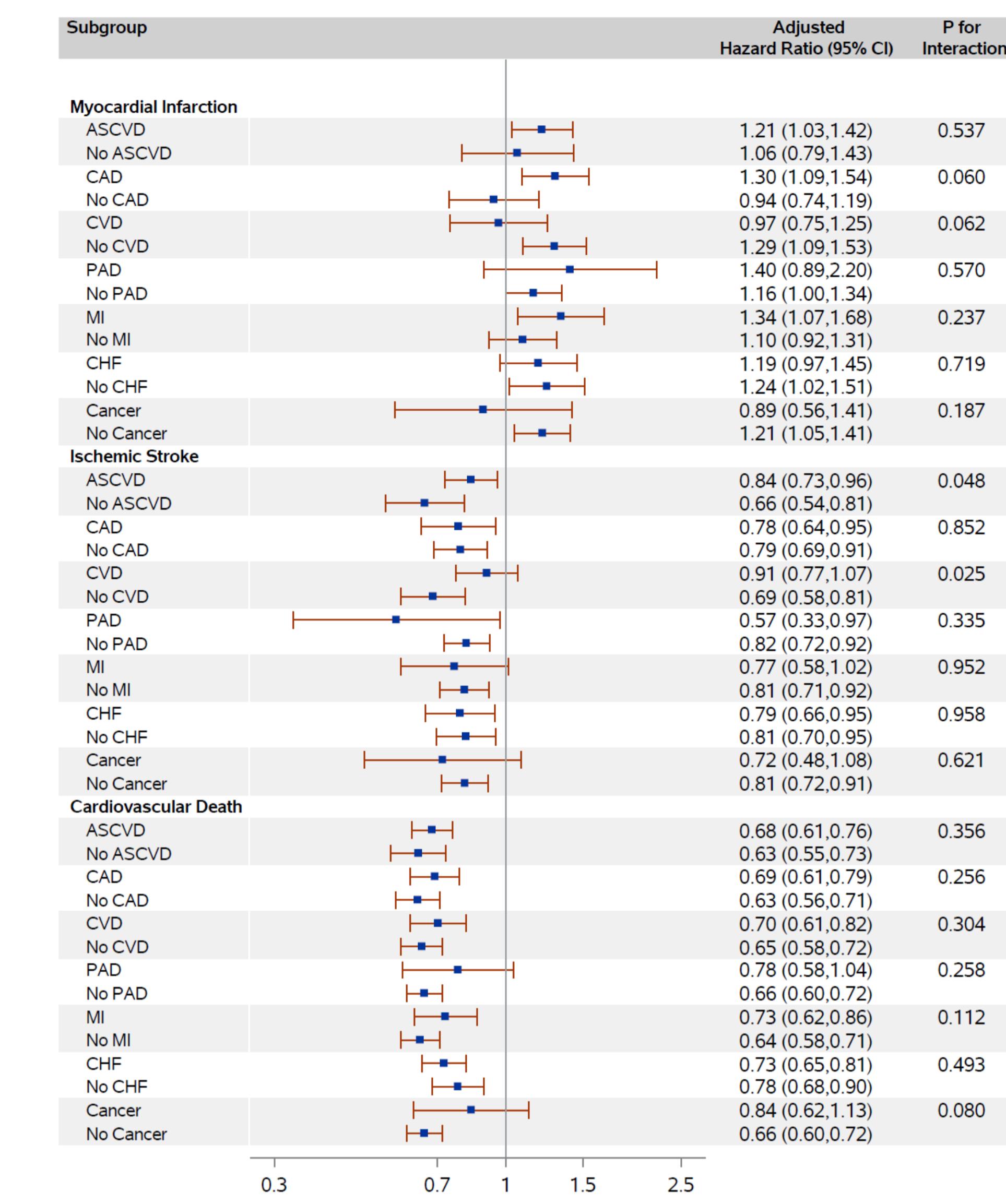




FIGURE 4 – Subgroups

DISCUSSION

Several mechanisms could explain different risks of MI in pts with PAF vs. non-PAF:

1. Direct effect of brief AF episodes on the ventricular myocardium at a cellular and microcirculatory level.
2. Higher risk for MI in patients with PAF could be due to tachycardia-induced myocardial ischemia in patients with coronary artery disease, e.g., a type 2 MI.
3. Another potential pathophysiologic mechanism could be the rupture of the coronary atherosclerotic plaque induced by tachycardia and excess circulating catecholamines.

On the contrary, in individuals with non-PAF, effective rate control together with chronic remodeling in the left atrium may counterbalance the associated flow variation and oxidative stress, rendering ventricular ischemia less likely.

LIMITATIONS

1. The main limitation of the study is that this was a post-hoc analysis of non-randomized groups, and therefore, the baseline characteristics of patients in the two groups were imbalanced. Although we adjusted our analyses for several potentially confounding variables, still unmeasured confounders may have influenced our results.
2. Another limitation is that changes in the pattern of AF might have occurred during the follow-up period. Furthermore, we could not assess the type of MI, e.g., STEMI vs. NSTEMI, Type 1 vs 2, which could provide further insight into the underlying pathophysiology.

CONCLUSION

This individual patient-level meta-analysis of 71,466 patients from COMBINE AF shows that the adjusted risk of MI is higher in patients with PAF than non-PAF, while the adjusted risks of ischemic stroke and CV death were lower in patients with PAF.