

Polygenic Risk Stratification for Risk of Venous Thromboembolism: Analysis of >31K Individuals from the Women's Genome Health Study and JUPITER Trials

Michael Rosamilia¹, Giorgio E.M. Melloni², Frederick K. Kamanu², Marc S. Sabatine², Christian T. Ruff², Paul M. Ridker², Nicholas A. Marston^{2*}, Daniel I. Chasman^{2*}

¹Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, ²Thrombolysis in Myocardial Infarction (TIMI) Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital

Abstract: MDP57

Scientific
Sessions

American
Heart
Association

November 16-18, 2024
Chicago, IL

FINANCIAL DISCLOSURE

Presenter: Michael Rosamilia

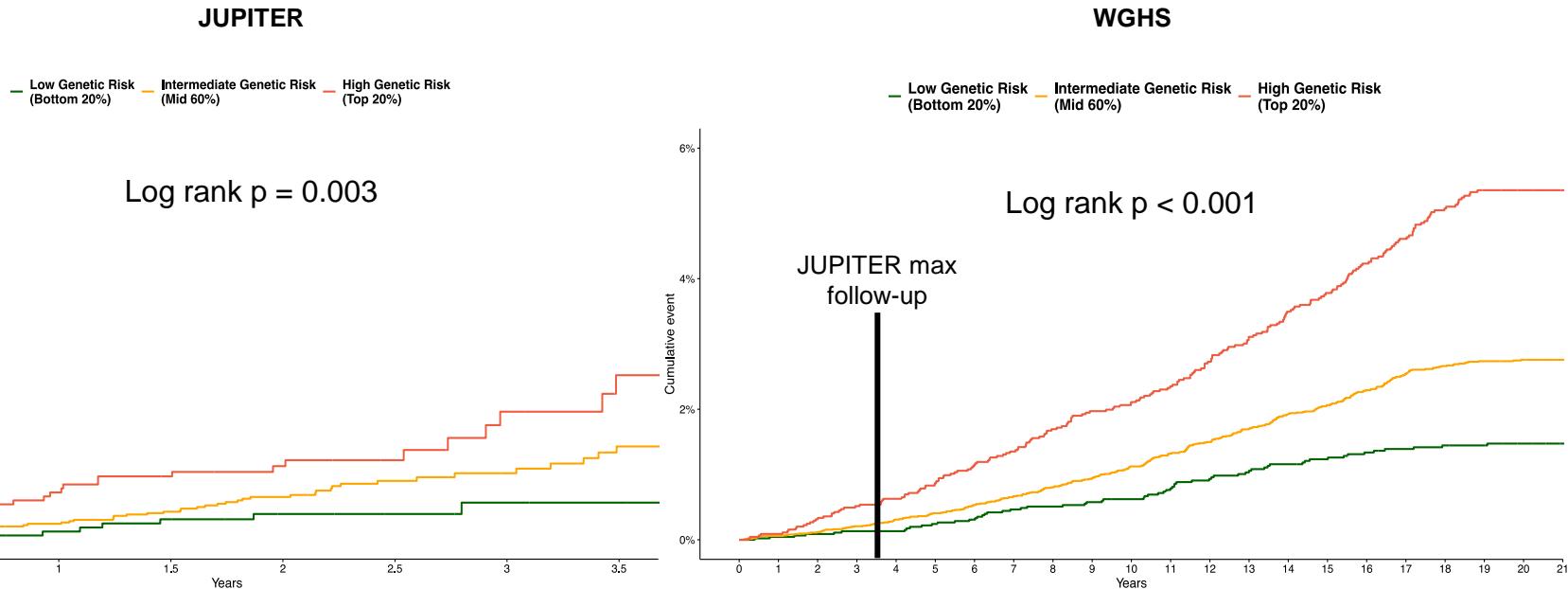
No disclosures

BACKGROUND/AIM

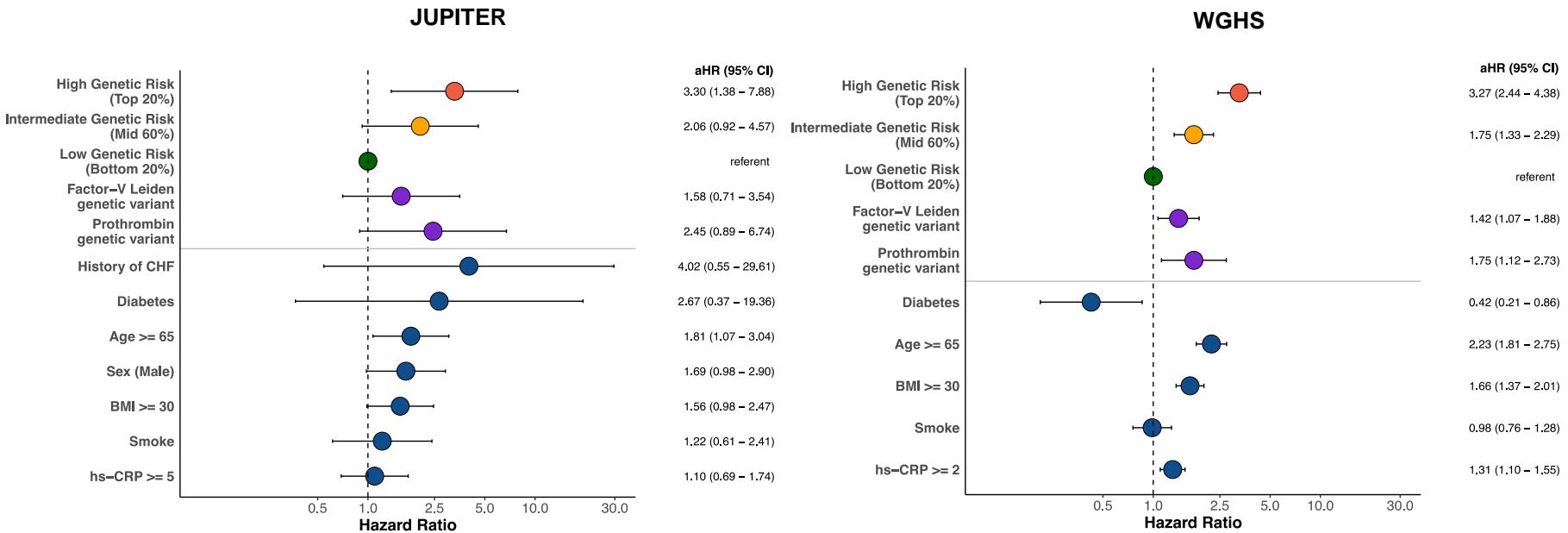
- Venous thromboembolism (VTE) carries **high morbidity and mortality**
- **Early risk identification** could guide preventive strategies that decrease the burden of VTE
- There is limited data in clinical trial populations on whether **polygenic risk scoring (PRS)** is an independent risk factor for VTE
- We aim to determine whether a recent PRS is an **independent predictor of VTE risk** in a cardiovascular disease primary prevention population

METHODS AND MATERIALS

- Applied the **2023 VTE genetic risk score derived by PRS-continuous shrinkage by Ghous et al¹**, which includes Factor V Leiden and prothrombin gene variants, to imputed genetic data from two trial populations without history of cardiovascular disease, **JUPITER and WGHS^{2,3}**
- **Calculated adjusted hazard ratios (aHR) of VTE** for each trial by risk categories of low (bottom 20%), intermediate (middle 60%) and high (top 20%) risk PRS
- Covariates included diabetes status, age ($>=65$), sex (only JUPITER), BMI ($>=30$), smoking status, history of CHF (only JUPITER), and hs-CRP ($>=5$ in JUPITER and $>=2$ in WGHS)
- Created **Kaplan Meier curves for VTE cumulative events over time by PRS risk category** for JUPITER and WGHS


RESULTS – BASELINE CHARACTERISTICS

JUPITER			
	Low-Risk PRS (n=1,750)	Moderate-Risk PRS (n=5,249)	High-Risk PRS (n=1,750)
Age, years	66	66	66
Sex, % male	68%	68%	66%
BMI, kg/m²	28.3	28.7	29.0
Current smoker	14%	13%	13%
Diabetes	0.6%	0.4%	0.3%
CHF	0.2%	0.3%	0.2%
LDL, mg/dL	110	110	110
hs-CRP, mg/L	4.0	4.1	4.1


WGHS			
	Low-Risk PRS (n=4,659)	Moderate-Risk PRS (n=13,976)	High-Risk PRS (n=4,659)
Age, years	53	53	53
Sex, % male	0%	0%	0%
BMI, kg/m²	24.6	24.9	25.0
Current smoker	11%	12%	12%
Diabetes	2.3%	2.5%	2.9%
CHF	0.2%	0.1%	0.1%
LDL, mg/dL	121	121	122
hs-CRP, mg/L	2.0	2.0	2.0

RESULTS – KM VISUALIZATION OF VTE CUMULATIVE EVENTS

- Annualized VTE event rate (per person per year) of 0.38% in JUPITER and 0.13% in WGHS
- Detected VTE events in JUPITER: Low Risk PRS – 7 (0.4%), Intermediate – 45 (0.9%), High – 25 (1.4%)
- Detected VTE events in WGHS: Low Risk PRS – 62 (1.3%), Intermediate – 339 (2.4%), High – 217 (4.7%)

RESULTS – ADJUSTED HAZARD RATIO BY PRS AND COVARIABLE

CONCLUSIONS

- The 2023 VTE PRS, when applied to primary prevention data from JUPITER and WGHS, was a strong and non-redundant predictor of VTE risk
- Individuals with high-risk PRS had comparable VTE risk to those with monogenic thrombophilia, despite the fact that only approximately 5% of the population carries at least one copy of a pathogenic variant in the prothrombin or Factor V Leiden genes
- These findings suggest that PRS could change patient risk stratification and guide management, including consideration for longer duration of anticoagulant therapy after VTE or for familial genetic counseling

REFERENCES

1. Ghose J, Tragante V, Ahlberg G, et al. Genome-wide meta-analysis identifies 93 risk loci and enables risk prediction equivalent to monogenic forms of venous thromboembolism. *Nature Genetics*. 2023;55(3):399–409.
2. Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. *The New England Journal of Medicine*. 2008;359(21):2195–2207.
3. Ridker PM, Chasman DI, Zee RYL, et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women. *Clinical Chemistry*. 2008;54(2):249–255.