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1) Background and motivation



1) Background and motivation

» Polygenic Risk Score (PRS) quantifies an individual’'s genetic susceptibility to a

phenotypic trait or disease relative to a population
» PRS has been utilized in various recent clinical applications to enhance risk

stratification for patients
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» This is commonly achieved by assessing (potentially non-linear) interactions
between PRS and clinical variables® defined a priori

['A] HR for MI per 1-SD increase in CAD PRS HR for MI by CAD genetic risk categories as a function of age
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Figure 1 from Marston et al. JAMA Cardiology 2022

'E.g., demographic, physiological, medical history, medication use, behavioral/lifestyle, and

biomarkers
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Approaches to assessing interaction effects

» Regression models (logistic, linear)
> Model formulation: /og(%) = Bo + BiX1 + BoXo + B3( X1 - Xo) + S2BiX; + €
» Y: binary outcome
> Xi - Xo: interaction term capturing the combined effect of two variables
» [(3: quantifies the strength and direction of the interaction
» Key considerations:

P> Requires pre-specification of interaction terms
» Computationally expensive for exhaustive interaction searches in high-dimensional
datasets

» Machine learning (ML)

» Handles large-scale data and uncovers complex, non-linear interactions
» More flexible compared to traditional regression models for interaction detection

» Challenge

» Formal comparisons and evaluations of ML for interaction assessments with
biobank-scale multimodal data have not been fully examined
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Objective

» Develop a ML workflow for detecting genetic-clinical interactions in
high-dimensional, large-scale datasets

» Apply the workflow to explore the relationship between genetic predisposition to
an outcome and clinical risk factors

» Benchmark ML algorithms with a focus on model interpretability and clinical
relevance of results
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2) Study design and workflow



2) Study design and workflow

‘ Data preprocessing and feature engineering | Imputation, transformation, encoding, train-test split

2

Gradient boosting machine, random forest, neural networks

‘ Model selection and implementation

2

Grid search, random search, Bayesian optimization

‘ Model training and hyperparameter tuning

2

‘ Model performance evaluation | Confusion matrix, accuracy, area under the curve, ROC curve

Friedman's H-statistic, Shapley additive explanations

B

Modeling non-linear relationships
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3) lllustrative example
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3) lllustrative example

» Evaluate whether the interactions between Coronary Artery Disease (CAD) PRS

and clinical risk factors further explain risk for incident Myocardial Infarction (MI)
using multiple ML approaches

» Light gradient boosting machine (LightGBM), extreme gradient boosting
(XGBoost), random forest (RF), symbolic regression (SR), neural networks (NNs)

ML workflow

UK Biobank CAD GWAS; - -
uk . nterpretable
ibiobank P ML
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Dataset overview

» Dataset: UK Biobank (UKB)?

» Endpoint: incident Myocardial Infarction (MI) in 323,267 individuals of European
ancestry, free of atherosclerotic cardiovascular disease (ASCVD)? and not on
lipid-lowering medications at baseline

> A total of 4,598 (1.4%) participants experienced an MI*

» CAD PRS: computed for each participant using 241 conditionally independent
genome-wide significant SNVs identified in a recent GWAS from CARDIoGRAMplusC4D
Consortium® (a large-scale meta-analysis with over 1 million participants)

2 prospective population-based study in the United Kingdom, including over half a million
participants aged 40 to 69 at recruitment (2006-2010), collecting comprehensive data on
environmental and lifestyle factors, genetics, biomarkers, proteomics, metabolomics, imaging, and
electronic health records

3Prior M1, CAD diagnosis, stroke, or peripheral vascular disease

*Data updated to mid-2021

®Coronary Artery Disease Genome-Wide Replication and Meta-analysis (CARDIoGRAM) plus the

Coronary Artery Disease (C4D) Genetics
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Clinical risk factors

» A comprehensive set of clinical risk factors was examined for potential interactions
with CAD PRS, including:

» Demographic: age, sex

> Physiological: body mass index (BMI), systolic blood pressure (SBP)

» Behavioral/lifestyle: smoking status

» Medical history: history of hypertension, history of hypercholesterolemia, history of
diabetes

> Biomarkers: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), triglycerides (TG), c-reactive protein (CRP), cystatin c,
lipoprotein(a) (Lp(a)), albumin, alkaline phosphatase (ALP), hbAlc, eGFR

» Model training, hyperparameter tuning, and model performance evaluation were
conducted (results not shown)
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4) Results
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Results from part A: Friedman’s H-statistic for interaction terms

P H-statistic quantifies the interaction strength between predictors by measuring the
proportion of prediction variance attributed to their interaction
P Total interaction: measures how much a predictor interacts with all other predictors
P Pairwise interaction: measures the interaction strength between two specific predictors

| | P Green cells: total interactions

» Purple cells: pairwise interactions

> Interaction strength increases with color
intensity

XGBoost
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Results from part A: Shapley additive explanations (SHAP)
interaction values

> SHAP is a game-theory-based method for explaining ML model outputs by assigning an
importance value to each predictor for a specific prediction

P The contribution of each predictor can be further decomposed into main effects and
pairwise interaction effects

+ +
T
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X-axis: represents the SHAP values for
each predictor

|

» Y-axis: lists the predictors included in the
model, arranged vertically by importance
(high to low)

» Color gradient: shows the predictor’s

value, where darker red correspond to
higher values
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Results from part A: Concordance of PRS-clinical interactions
across ML models

Algorithms LightGBM XGBoost
Interactions® H-statistic SHAP  H-statistic SHAP
PRS x Sex 1° 1 1 1
PRS x HbAlc 2 8 7 7
PRS x HDL-C 3 4 2 2
PRS x SBP 4 3 6 4
PRS x Smoking 5 5 9

PRS x Age 6 2 3 3
PRS x LDL-C 7 7 4 6
PRS x CRP 8 9 8 9
PRS x CystatinC 9 10 5 5
PRS x hxHTN 10 6

PRS x eGFR 8

? Top-ranked interactions based on importance were evaluated and
compared

b Ranks of interactions within each model
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Results from part B: Restricted cubic splines for key interactions
between CAD PRS and continuous variables
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P Negative interactions were observed between CAD PRS and increased age, HDL-C, and
Cystatin C whereas high CAD PRS yielded joint positive associations with HbAlc
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Results from part B: Event rate of Ml across CAD PRS stratified
by categorical variables

5%

4%

3%

2%

Observed Ml Event Rate

1%

—F—mM

A

0% 10% 20% 3

40% 50% 60% 70% 80% 90% 100%

Normalized CAD PRS

(a) Sex

2
B

2
B

]
R

Q
R®

2%

Observed Ml Event Rate

ES

= Never — Previous = Current

0% 10%

20% 30% 40% 50% 60% 70% 80%

Normalized CAD PRS

(b) Smoking status

90% 100%

P Joint risk increases were observed in males and current smokers with a high CAD PRS

19/24

Y-PL et al. ENAR 2025



5) Summary and discussion
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5) Summary and discussion

» Most PRS-clinical interactions identified by the ML models for predicting
myocardial infarction risk were consistent and further assessed using restricted
cubic splines to validate non-linear relationships

» ML-driven screening allowed identifying and validating interactions that had not
been defined a priori

» This study demonstrated the benefits of using ML to detect genetic-clinical
interactions, enhancing both hypothesis generation and patient risk stratification
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Open source ML algorithms and resources for interaction
identification

> ML algorithms

» Gradient boosting machine: LightGBM v4.5.0
(https://github.com/microsoft/Light GBM)
> Extreme gradient boosting: XGBoost v2.1.4 (https://github.com/dmlc/xgboost)
> Symbolic regression: Feyn (QLattice algorithm) v3.4.0
(https://github.com/abzu-ai/QLattice-clinical-omics)
> Interpretable ML
> Friedman's H-statistic: artemis v0.1.5 (https://github.com/pyartemis/artemis)
» Shapley additive explanations: SHAP v0.46.0 (https://github.com/shap/shap)
» Restricted cubic splines: interactionRCS v0.1.1
(https://github.com/cran/interactionRCS)
» Others

» Python modules for ML: scikit-learn v1.5.2
(https://github.com/scikit-learn /scikit-learn)
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PRS estimation

» Polygenic Risk Score (PRS) quantifies an individual's genetic predisposition to a
specific trait or disease based on the cumulative effect of multiple genetic variants
within a population

» A PRS of an individual j is calculated as a weighted sum of risk alleles across
independent genome-wide statistically significant single-nucleotide variants

(SNVs):

> PRS; =1L, BiGy
» where N is the total number of SNVs identified from genome-wide association
studies (GWAS), f; represents the effect size of SNV;, and Gj; denotes the number

of risk alleles of SNV; that individual j carries
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Results: Correlations of pairwise variables

» Variables with a correlation coefficient = 0.7 were removed prior to modeling to
reduce multicollinearity
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Results: Friedman’s H-statistic for interaction terms

P H-statistic quantifies the interaction strength between a pair of predictors by assessing the
proportion of prediction variance attributed to their interaction
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Results: Friedman’s H-statistic for total interactions

» The total interaction measure quantifies the extent to which a predictor interacts with all
other predictors in the model
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Results: Friedman’s H-statistic for pairwise interactions

P A pairwise interaction measure evaluates the presence and magnitude of interaction
between two specific predictors within the model

Interaction

Y-PL et al

Pair interactions

Sex:CAD_PRS

Smoking_status:LDL_mg_dI

Log_ALP:Log_TG

Sex:Age

Age:Log_CystatinC

Hbalc:HDL_mg_di
HDL_mg_d:SBP 1
PRS:Hbalc 1

Smoking_status:CAD_PRS 1
Sex:Log_CystatinC 1

Log_Ci DL_mg_di

CAD_PRS:Ag

Ipa

Albumin:Hbalc 1
Smoking_status:Log_CystatinC }
CAD_PRS:LDL_mg_dI 1

hxHypertension:Log_CystatinC 1
‘Smoking_status:Log_ALP 1
Age:SBP
Albumin:eGFR
000

ENAR 2025

0.02 0.04 0.06 0.08

010

012

Friedman H-statistic Interaction Measure

(a) LightGBM

Interaction

Pair interactions

Sex:CAD_PRS

CAD_PRS:HDL_mg_dI

BMI:Log_C

Sex:LDL_mg_dI

CAD_PRS:Age

Sex:Age
CAD_PRS:LDL_mg_dI

smoking_status:LDL_mg_dI 1
BMiHbalc 1
smoking_status:Log_CystatinC 1

(DL_mg_dI:HDL_mg_dI
Age:HDL_mg_dl
LDL_mg_dl:Log_CystatinC
Albumin:Log_TG
CAD_PRS:Log_CystatinC 1
_PRS:SBP 1
HDL_mg_dl:Log_CystatinC 1
10g_TG:Log_Ipa
‘Smoking_status:Log_ALP
CAD_PRS:Hbalc |
smoking_status:Hbalc 1
Age:SBP 1

smoking_status:eGFR

L0g_ALP:Log_TG Jumm

0.00

0.02 0.04 0.06 0.08 0.10
Friedman H-statistic Interaction Measure

(b) XGBoost

30/24



Results: Shapley additive explanations (SHAP) interaction values
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Results: Symbolic regression

» Symbolic regression is an evolutionary algorithm-based technique that searches for the
optimal mathematical expression to describe a given dataset by combining mathematical
operators, variables, and constants, without assuming a predefined model structure
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