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1) Background and motivation
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1) Background and motivation
▶ Polygenic Risk Score (PRS) quantifies an individual’s genetic susceptibility to a

phenotypic trait or disease relative to a population
▶ PRS has been utilized in various recent clinical applications to enhance risk

stratification for patients

Figure 1 from Schwarzerova et al. Briefings in Bioinformatics 2024
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▶ This is commonly achieved by assessing (potentially non-linear) interactions
between PRS and clinical variables1 defined a priori

(a) Numerical coronary artery disease
(CAD) PRS x age

(b) Categorical CAD PRS x age

Figure 1 from Marston et al. JAMA Cardiology 2022

1E.g., demographic, physiological, medical history, medication use, behavioral/lifestyle, and
biomarkers
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Approaches to assessing interaction effects

▶ Regression models (logistic, linear)
▶ Model formulation: log( P(Y =1)

P(Y =0) ) = β0 + β1X1 + β2X2 + β3(X1 · X2) +
∑

βiXi + ϵ

▶ Y : binary outcome
▶ X1 · X2: interaction term capturing the combined effect of two variables
▶ β3: quantifies the strength and direction of the interaction

▶ Key considerations:
▶ Requires pre-specification of interaction terms
▶ Computationally expensive for exhaustive interaction searches in high-dimensional

datasets
▶ Machine learning (ML)

▶ Handles large-scale data and uncovers complex, non-linear interactions
▶ More flexible compared to traditional regression models for interaction detection

▶ Challenge
▶ Formal comparisons and evaluations of ML for interaction assessments with

biobank-scale multimodal data have not been fully examined
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Objective

▶ Develop a ML workflow for detecting genetic-clinical interactions in
high-dimensional, large-scale datasets

▶ Apply the workflow to explore the relationship between genetic predisposition to
an outcome and clinical risk factors

▶ Benchmark ML algorithms with a focus on model interpretability and clinical
relevance of results
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2) Study design and workflow
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2) Study design and workflow

Data preprocessing and feature engineering Imputation, transformation, encoding, train-test split

Model selection and implementation Gradient boosting machine, random forest, neural networks

Model training and hyperparameter tuning Grid search, random search, Bayesian optimization

Model performance evaluation Confusion matrix, accuracy, area under the curve, ROC curve

Interaction analysis using interpretable ML Friedman’s H-statistic, Shapley additive explanationsA

Restricted cubic splines for validating candidate interactions Modeling non-linear relationshipsB
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3) Illustrative example
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3) Illustrative example

▶ Evaluate whether the interactions between Coronary Artery Disease (CAD) PRS
and clinical risk factors further explain risk for incident Myocardial Infarction (MI)
using multiple ML approaches
▶ Light gradient boosting machine (LightGBM), extreme gradient boosting

(XGBoost), random forest (RF), symbolic regression (SR), neural networks (NNs)
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Dataset overview

▶ Dataset: UK Biobank (UKB)2

▶ Endpoint: incident Myocardial Infarction (MI) in 323,267 individuals of European
ancestry, free of atherosclerotic cardiovascular disease (ASCVD)3 and not on
lipid-lowering medications at baseline
▶ A total of 4,598 (1.4%) participants experienced an MI4

▶ CAD PRS: computed for each participant using 241 conditionally independent
genome-wide significant SNVs identified in a recent GWAS from CARDIoGRAMplusC4D
Consortium5 (a large-scale meta-analysis with over 1 million participants)

2A prospective population-based study in the United Kingdom, including over half a million
participants aged 40 to 69 at recruitment (2006–2010), collecting comprehensive data on
environmental and lifestyle factors, genetics, biomarkers, proteomics, metabolomics, imaging, and
electronic health records

3Prior MI, CAD diagnosis, stroke, or peripheral vascular disease
4Data updated to mid-2021
5Coronary Artery Disease Genome-Wide Replication and Meta-analysis (CARDIoGRAM) plus the

Coronary Artery Disease (C4D) Genetics
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Clinical risk factors

▶ A comprehensive set of clinical risk factors was examined for potential interactions
with CAD PRS, including:
▶ Demographic: age, sex
▶ Physiological: body mass index (BMI), systolic blood pressure (SBP)
▶ Behavioral/lifestyle: smoking status
▶ Medical history: history of hypertension, history of hypercholesterolemia, history of

diabetes
▶ Biomarkers: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), triglycerides (TG), c-reactive protein (CRP), cystatin c,
lipoprotein(a) (Lp(a)), albumin, alkaline phosphatase (ALP), hbA1c, eGFR

▶ Model training, hyperparameter tuning, and model performance evaluation were
conducted (results not shown)
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4) Results
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Results from part A: Friedman’s H-statistic for interaction terms
▶ H-statistic quantifies the interaction strength between predictors by measuring the

proportion of prediction variance attributed to their interaction
▶ Total interaction: measures how much a predictor interacts with all other predictors
▶ Pairwise interaction: measures the interaction strength between two specific predictors

XGBoost

▶ Green cells: total interactions
▶ Purple cells: pairwise interactions
▶ Interaction strength increases with color

intensity
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Results from part A: Shapley additive explanations (SHAP)
interaction values

▶ SHAP is a game-theory-based method for explaining ML model outputs by assigning an
importance value to each predictor for a specific prediction
▶ The contribution of each predictor can be further decomposed into main effects and

pairwise interaction effects

XGBoost

▶ X-axis: represents the SHAP values for
each predictor

▶ Y-axis: lists the predictors included in the
model, arranged vertically by importance
(high to low)

▶ Color gradient: shows the predictor’s
value, where darker red correspond to
higher values
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Results from part A: Concordance of PRS-clinical interactions
across ML models

Algorithms LightGBM XGBoost

Interactionsa H-statistic SHAP H-statistic SHAP

PRS × Sex 1b 1 1 1
PRS × HbA1c 2 8 7 7
PRS × HDL-C 3 4 2 2
PRS × SBP 4 3 6 4
PRS × Smoking 5 5 9
PRS × Age 6 2 3 3
PRS × LDL-C 7 7 4 6
PRS × CRP 8 9 8 9
PRS × CystatinC 9 10 5 5
PRS × hxHTN 10 6
PRS × eGFR 8
a Top-ranked interactions based on importance were evaluated and
compared
b Ranks of interactions within each model
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Results from part B: Restricted cubic splines for key interactions
between CAD PRS and continuous variables

▶ Negative interactions were observed between CAD PRS and increased age, HDL-C, and
Cystatin C whereas high CAD PRS yielded joint positive associations with HbA1c
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Results from part B: Event rate of MI across CAD PRS stratified
by categorical variables

(a) Sex (b) Smoking status

▶ Joint risk increases were observed in males and current smokers with a high CAD PRS
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5) Summary and discussion
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5) Summary and discussion

▶ Most PRS-clinical interactions identified by the ML models for predicting
myocardial infarction risk were consistent and further assessed using restricted
cubic splines to validate non-linear relationships

▶ ML-driven screening allowed identifying and validating interactions that had not
been defined a priori

▶ This study demonstrated the benefits of using ML to detect genetic-clinical
interactions, enhancing both hypothesis generation and patient risk stratification

Y-PL et al. ENAR 2025 21/24



Open source ML algorithms and resources for interaction
identification

▶ ML algorithms
▶ Gradient boosting machine: LightGBM v4.5.0

(https://github.com/microsoft/LightGBM)
▶ Extreme gradient boosting: XGBoost v2.1.4 (https://github.com/dmlc/xgboost)
▶ Symbolic regression: Feyn (QLattice algorithm) v3.4.0

(https://github.com/abzu-ai/QLattice-clinical-omics)
▶ Interpretable ML

▶ Friedman’s H-statistic: artemis v0.1.5 (https://github.com/pyartemis/artemis)
▶ Shapley additive explanations: SHAP v0.46.0 (https://github.com/shap/shap)
▶ Restricted cubic splines: interactionRCS v0.1.1

(https://github.com/cran/interactionRCS)
▶ Others

▶ Python modules for ML: scikit-learn v1.5.2
(https://github.com/scikit-learn/scikit-learn)
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Thanks for your attention!

Contact:

ylai4@bwh.harvard.edu

timi.org/biostatistics/

@TimiStudyGroup
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Appendix
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PRS estimation

▶ Polygenic Risk Score (PRS) quantifies an individual’s genetic predisposition to a
specific trait or disease based on the cumulative effect of multiple genetic variants
within a population

▶ A PRS of an individual j is calculated as a weighted sum of risk alleles across
independent genome-wide statistically significant single-nucleotide variants
(SNVs):
▶ PRSj =

∑N
i=1 βiGij

▶ where N is the total number of SNVs identified from genome-wide association
studies (GWAS), βi represents the effect size of SNVi , and Gij denotes the number
of risk alleles of SNVi that individual j carries
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Results: Correlations of pairwise variables
▶ Variables with a correlation coefficient ≧ 0.7 were removed prior to modeling to

reduce multicollinearity
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Results: Friedman’s H-statistic for interaction terms
▶ H-statistic quantifies the interaction strength between a pair of predictors by assessing the

proportion of prediction variance attributed to their interaction

(a) LightGBM (b) XGBoost
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Results: Friedman’s H-statistic for total interactions

▶ The total interaction measure quantifies the extent to which a predictor interacts with all
other predictors in the model

(a) LightGBM (b) XGBoost
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Results: Friedman’s H-statistic for pairwise interactions
▶ A pairwise interaction measure evaluates the presence and magnitude of interaction

between two specific predictors within the model

(a) LightGBM (b) XGBoost
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Results: Shapley additive explanations (SHAP) interaction values

(a) LightGBM (b) XGBoost
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Results: Symbolic regression
▶ Symbolic regression is an evolutionary algorithm-based technique that searches for the

optimal mathematical expression to describe a given dataset by combining mathematical
operators, variables, and constants, without assuming a predefined model structure

(a) Best model from SR

(b) Second best model from SR
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