

Machine Learning Approaches for Genetics-Clinical Interaction Discovery: Methods Comparison and Application using UK Biobank Data

Yi-Pin Lai, Giorgio E. M. Melloni, Sabina A. Murphy, Siona Prasad,
Nicholas A. Marston, Andrea Bellavia

TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School

ylai4@bwh.harvard.edu

ENAR Spring Meeting, New Orleans, March 24th, 2025

Acknowledgments:

- ▶ Dr. Marc S. Sabatine, TIMI Study Group
- ▶ Dr. Christian T. Ruff, TIMI Study Group
- ▶ Dr. Frederick K. Kamanu, TIMI Study Group

Disclaimer:

The authors declare no conflict of interest. Y-PL, GEM, SAM, NAM and AB are members of the TIMI Study Group which has received institutional research grant support through Brigham and Women's Hospital from: Abbott, Abiomed, Inc., Amgen, Anthos Therapeutics, ARCA Biopharma, Inc., AstraZeneca, Boehringer Ingelheim, Cleerly, Inc., Daiichi-Sankyo, Ionis Pharmaceuticals, Inc., Janssen Research and Development, LLC, MedImmune, Merck, Novartis, Pfizer, Softcell Medical Limited, The Medicines Company

1) Background and motivation

1) Background and motivation

- ▶ Polygenic Risk Score (PRS) quantifies an individual's genetic susceptibility to a phenotypic trait or disease relative to a population
- ▶ PRS has been utilized in various recent clinical applications to enhance risk stratification for patients

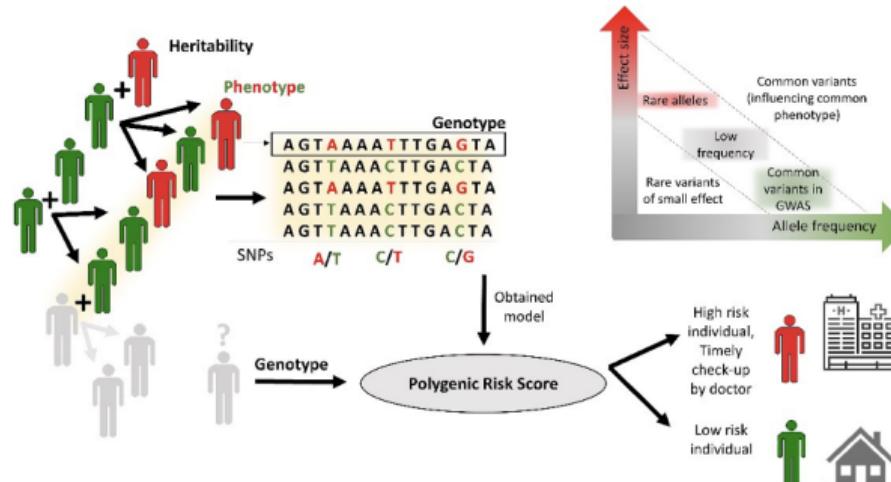
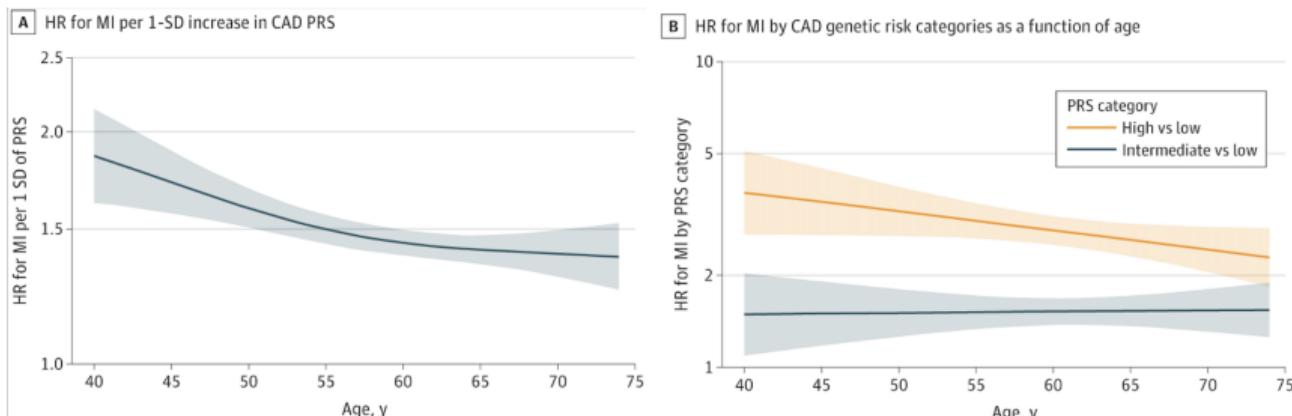


Figure 1 from Schwarzerova et al. *Briefings in Bioinformatics* 2024

- ▶ This is commonly achieved by assessing (potentially non-linear) interactions between PRS and clinical variables¹ defined a priori



(a) Numerical coronary artery disease (CAD) PRS x age

(b) Categorical CAD PRS x age

Figure 1 from Marston et al. JAMA Cardiology 2022

¹E.g., demographic, physiological, medical history, medication use, behavioral/lifestyle, and biomarkers

Approaches to assessing interaction effects

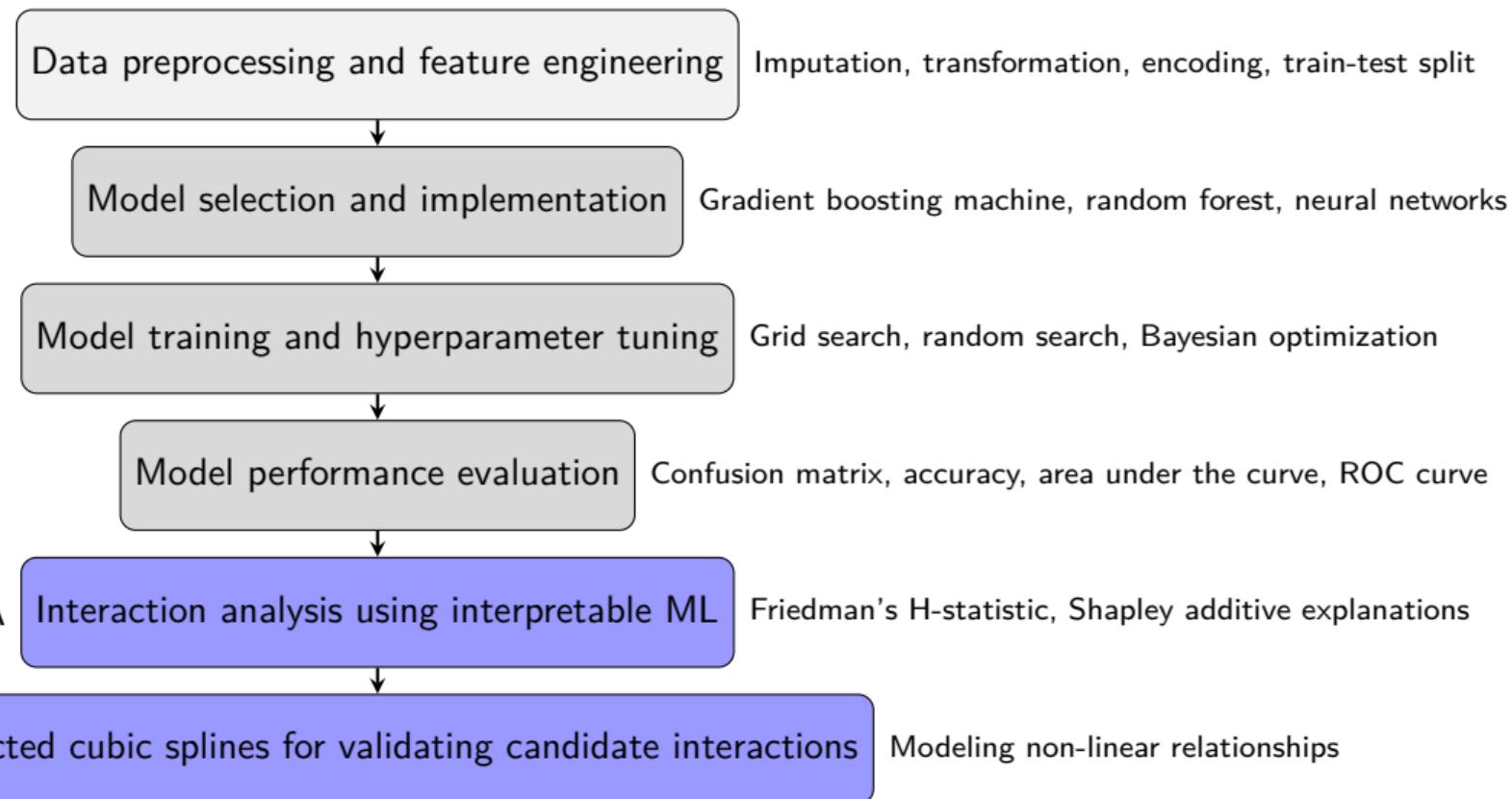
- ▶ Regression models (logistic, linear)
 - ▶ Model formulation: $\log\left(\frac{P(Y=1)}{P(Y=0)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3(X_1 \cdot X_2) + \sum \beta_i X_i + \epsilon$
 - ▶ Y : binary outcome
 - ▶ $X_1 \cdot X_2$: interaction term capturing the combined effect of two variables
 - ▶ β_3 : quantifies the strength and direction of the interaction
 - ▶ Key considerations:
 - ▶ Requires pre-specification of interaction terms
 - ▶ Computationally expensive for exhaustive interaction searches in high-dimensional datasets
- ▶ Machine learning (ML)
 - ▶ Handles large-scale data and uncovers complex, non-linear interactions
 - ▶ More flexible compared to traditional regression models for interaction detection
- ▶ Challenge
 - ▶ Formal comparisons and evaluations of ML for interaction assessments with biobank-scale multimodal data have not been fully examined

Objective

- ▶ Develop a ML workflow for detecting genetic-clinical interactions in high-dimensional, large-scale datasets
- ▶ Apply the workflow to explore the relationship between genetic predisposition to an outcome and clinical risk factors
- ▶ Benchmark ML algorithms with a focus on model interpretability and clinical relevance of results

2) Study design and workflow

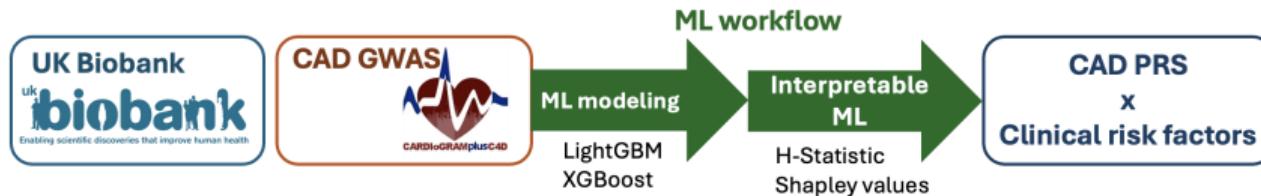
2) Study design and workflow



3) Illustrative example

3) Illustrative example

- ▶ Evaluate whether the interactions between Coronary Artery Disease (CAD) PRS and clinical risk factors further explain risk for incident Myocardial Infarction (MI) using multiple ML approaches
 - ▶ Light gradient boosting machine (LightGBM), extreme gradient boosting (XGBoost), random forest (RF), symbolic regression (SR), neural networks (NNs)



Dataset overview

- ▶ Dataset: **UK Biobank (UKB)²**
- ▶ Endpoint: incident **Myocardial Infarction (MI)** in **323,267 individuals** of European ancestry, free of atherosclerotic cardiovascular disease (ASCVD)³ and not on lipid-lowering medications at baseline
 - ▶ A total of 4,598 (1.4%) participants experienced an MI⁴
- ▶ **CAD PRS**: computed for each participant using 241 conditionally independent genome-wide significant SNVs identified in a recent GWAS from CARDIoGRAMplusC4D Consortium⁵ (a large-scale meta-analysis with over 1 million participants)

²A prospective population-based study in the United Kingdom, including over half a million participants aged 40 to 69 at recruitment (2006–2010), collecting comprehensive data on environmental and lifestyle factors, genetics, biomarkers, proteomics, metabolomics, imaging, and electronic health records

³Prior MI, CAD diagnosis, stroke, or peripheral vascular disease

⁴Data updated to mid-2021

⁵Coronary Artery Disease Genome-Wide Replication and Meta-analysis (CARDIoGRAM) plus the Coronary Artery Disease (C4D) Genetics

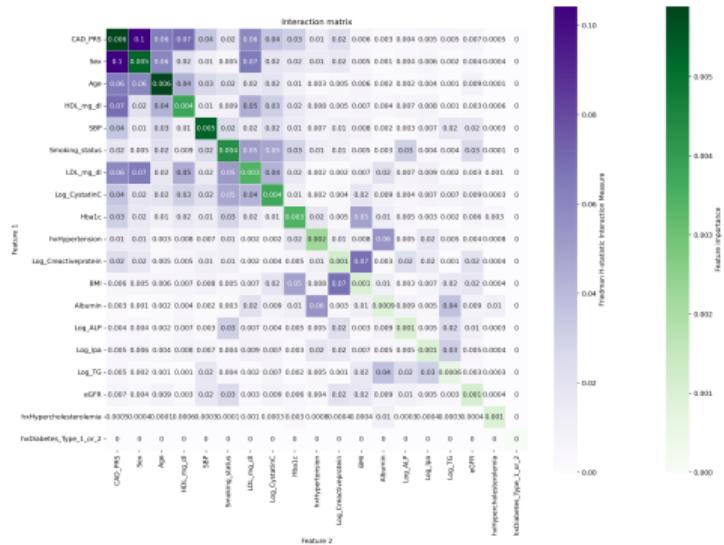
Clinical risk factors

- ▶ A comprehensive set of **clinical risk factors** was examined for potential interactions with CAD PRS, including:
 - ▶ Demographic: age, sex
 - ▶ Physiological: body mass index (BMI), systolic blood pressure (SBP)
 - ▶ Behavioral/lifestyle: smoking status
 - ▶ Medical history: history of hypertension, history of hypercholesterolemia, history of diabetes
 - ▶ Biomarkers: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), c-reactive protein (CRP), cystatin c, lipoprotein(a) (Lp(a)), albumin, alkaline phosphatase (ALP), hbA1c, eGFR
- ▶ Model training, hyperparameter tuning, and model performance evaluation were conducted (results not shown)

4) Results

Results from part A: Friedman's H-statistic for interaction terms

- H-statistic quantifies the **interaction strength** between predictors by measuring the proportion of prediction variance attributed to their interaction
 - **Total interaction**: measures how much a predictor interacts with all other predictors
 - **Pairwise interaction**: measures the interaction strength between two specific predictors

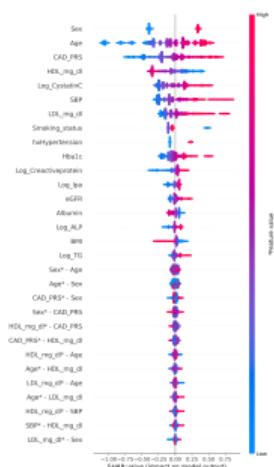


XGBoost

- Green cells: total interactions
- Purple cells: pairwise interactions
- Interaction strength increases with color intensity

Results from part A: Shapley additive explanations (SHAP) interaction values

- ▶ SHAP is a game-theory-based method for explaining ML model outputs by assigning an importance value to each predictor for a specific prediction
 - ▶ The contribution of each predictor can be further decomposed into **main effects** and **pairwise interaction effects**



XGBoost

- ▶ X-axis: represents the SHAP values for each predictor
- ▶ Y-axis: lists the predictors included in the model, arranged vertically by importance (high to low)
- ▶ Color gradient: shows the predictor's value, where darker red correspond to higher values

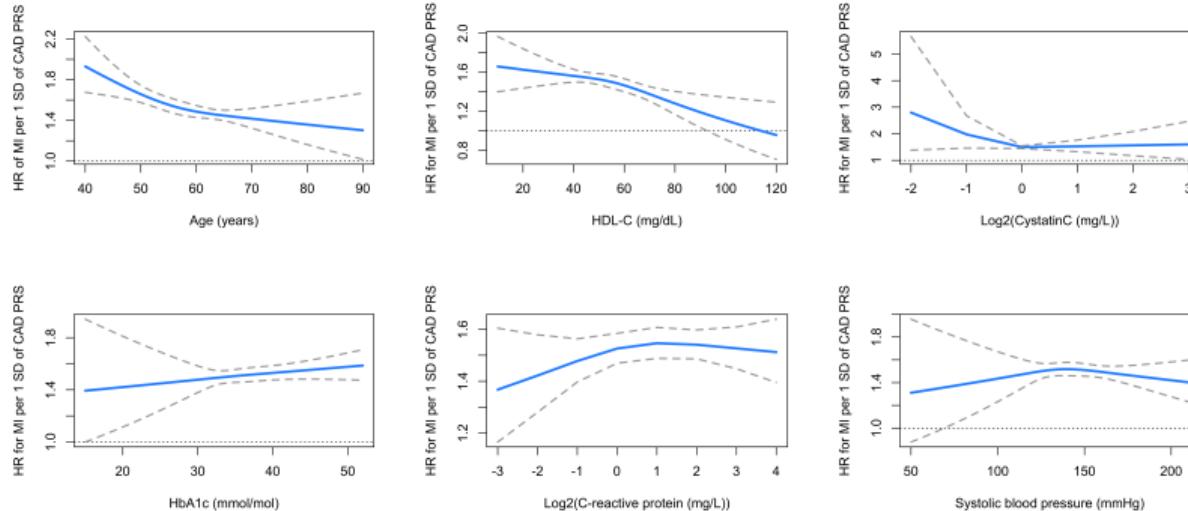
Results from part A: Concordance of PRS-clinical interactions across ML models

Algorithms	LightGBM		XGBoost	
	H-statistic	SHAP	H-statistic	SHAP
Interactions ^a				
PRS × Sex	1 ^b	1	1	1
PRS × HbA1c	2	8	7	7
PRS × HDL-C	3	4	2	2
PRS × SBP	4	3	6	4
PRS × Smoking	5	5	9	
PRS × Age	6	2	3	3
PRS × LDL-C	7	7	4	6
PRS × CRP	8	9	8	9
PRS × CystatinC	9	10	5	5
PRS × hxHTN	10	6		
PRS × eGFR				8

^a Top-ranked interactions based on importance were evaluated and compared

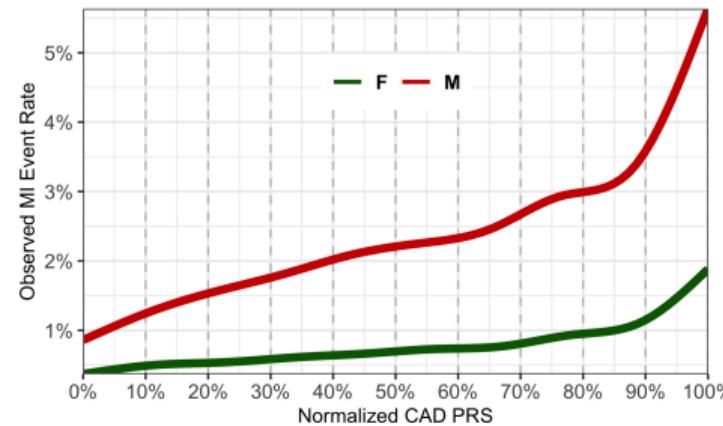
^b Ranks of interactions within each model

Results from part B: Restricted cubic splines for key interactions between CAD PRS and continuous variables

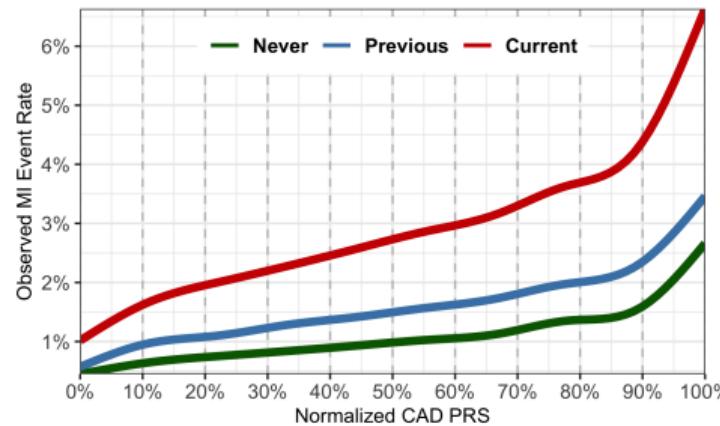


- ▶ Negative interactions were observed between CAD PRS and increased age, HDL-C, and Cystatin C whereas high CAD PRS yielded joint positive associations with HbA1c

Results from part B: Event rate of MI across CAD PRS stratified by categorical variables



(a) Sex



(b) Smoking status

- Joint risk increases were observed in males and current smokers with a high CAD PRS

5) Summary and discussion

5) Summary and discussion

- ▶ Most PRS-clinical interactions identified by the ML models for predicting myocardial infarction risk were consistent and further assessed using restricted cubic splines to validate non-linear relationships
- ▶ ML-driven screening allowed identifying and validating interactions that had not been defined a priori
- ▶ This study demonstrated the benefits of using ML to detect genetic-clinical interactions, enhancing both hypothesis generation and patient risk stratification

Open source ML algorithms and resources for interaction identification

- ▶ ML algorithms
 - ▶ Gradient boosting machine: LightGBM v4.5.0 (<https://github.com/microsoft/LightGBM>)
 - ▶ Extreme gradient boosting: XGBoost v2.1.4 (<https://github.com/dmlc/xgboost>)
 - ▶ Symbolic regression: Feyn (QLattice algorithm) v3.4.0 (<https://github.com/abzu-ai/QLattice-clinical-omics>)
- ▶ Interpretable ML
 - ▶ Friedman's H-statistic: artemis v0.1.5 (<https://github.com/pyartemis/artemis>)
 - ▶ Shapley additive explanations: SHAP v0.46.0 (<https://github.com/shap/shap>)
 - ▶ Restricted cubic splines: interactionRCS v0.1.1 (<https://github.com/cran/interactionRCS>)
- ▶ Others
 - ▶ Python modules for ML: scikit-learn v1.5.2 (<https://github.com/scikit-learn/scikit-learn>)

References

- ▶ Schwarzerova J, Hurta M, Barton V, et al. A perspective on genetic and polygenic risk scores—advances and limitations and overview of associated tools. *Briefings in Bioinformatics*. 2024. doi:10.1093/bib/bbae240
- ▶ Marston NA, Pirruccello JP, Melloni GEM, et al. Predictive Utility of a Coronary Artery Disease Polygenic Risk Score in Primary Prevention. *JAMA Cardiol*. 2023;8(2):130–137. doi:10.1001/jamacardio.2022.4466
- ▶ Ke G, Wang S, Yang Q, et al. LightGBM: A highly efficient gradient boosting decision tree. *Advances in Neural Information Processing Systems* (Vol. 30). 2017. doi:10.1109/NIPS.2017.5590
- ▶ Chen T and Guestrin C. XGBoost: A scalable tree boosting system. *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)*, 785–794. 2016. doi:10.1145/2939672.2939785
- ▶ Friedman JH and Popescu BE. Predictive learning via rule ensembles. *The Annals of Applied Statistics*. JSTOR, 916–54. 2008. doi:10.1214/07-AOAS148
- ▶ Lundberg SM and Lee SI. A unified approach to interpreting model predictions. *Advances in Neural Information Processing Systems* (Vol. 30). 2017. doi:10.48550/arXiv.1705.07874

Thanks for your attention!

Contact:

ylai4@bwh.harvard.edu

timi.org/biostatistics/

@TimiStudyGroup

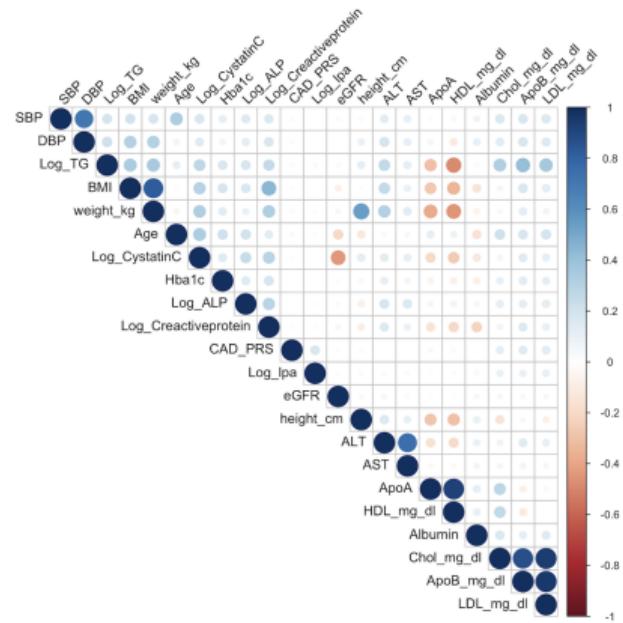
Appendix

PRS estimation

- ▶ Polygenic Risk Score (PRS) quantifies an individual's genetic predisposition to a specific trait or disease based on the cumulative effect of multiple genetic variants within a population
- ▶ A PRS of an individual j is calculated as a weighted sum of risk alleles across independent genome-wide statistically significant single-nucleotide variants (SNVs):
 - ▶ $PRS_j = \sum_{i=1}^N \beta_i G_{ij}$
 - ▶ where N is the total number of SNVs identified from genome-wide association studies (GWAS), β_i represents the effect size of SNV_i , and G_{ij} denotes the number of risk alleles of SNV_i that individual j carries

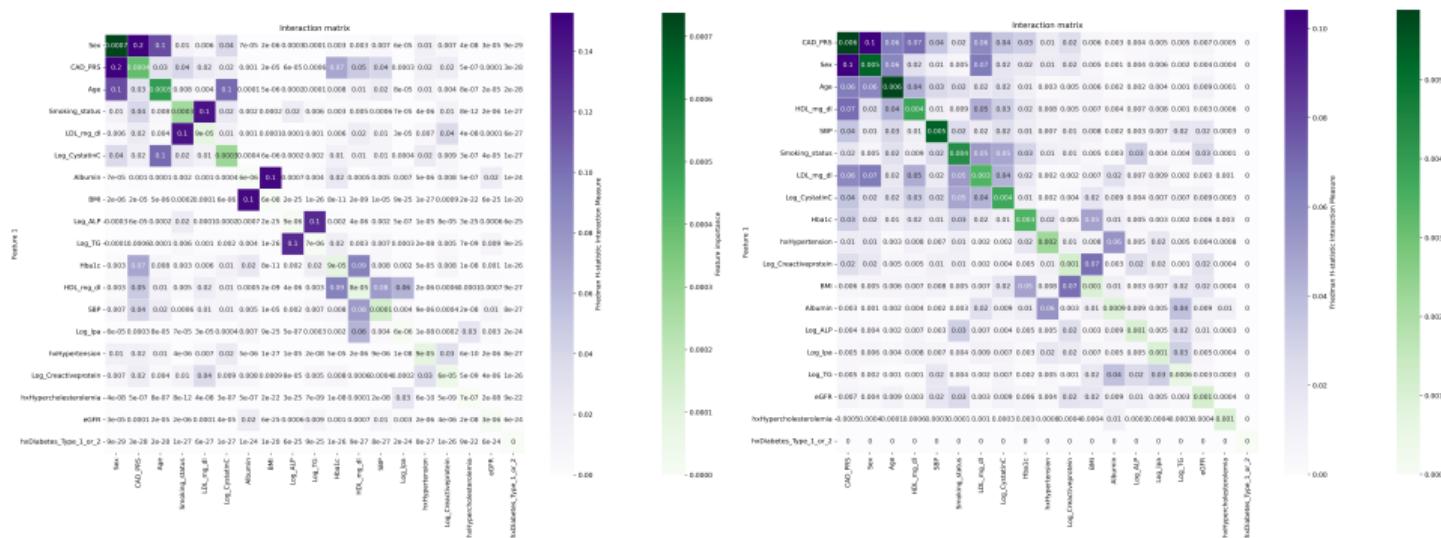
Results: Correlations of pairwise variables

- Variables with a correlation coefficient ≥ 0.7 were removed prior to modeling to reduce multicollinearity



Results: Friedman's H-statistic for interaction terms

- ▶ H-statistic quantifies the **interaction strength** between a pair of predictors by assessing the proportion of prediction variance attributed to their interaction

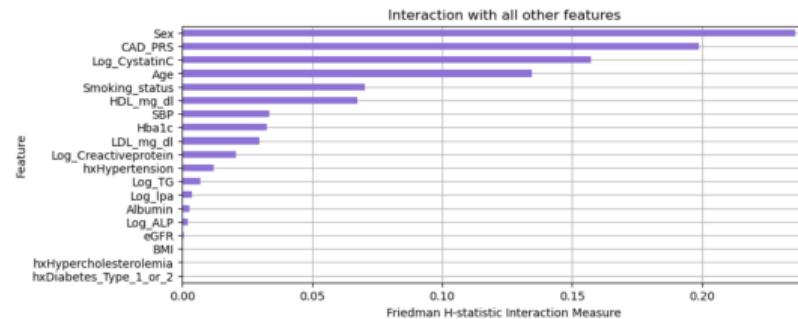


(a) LightGBM

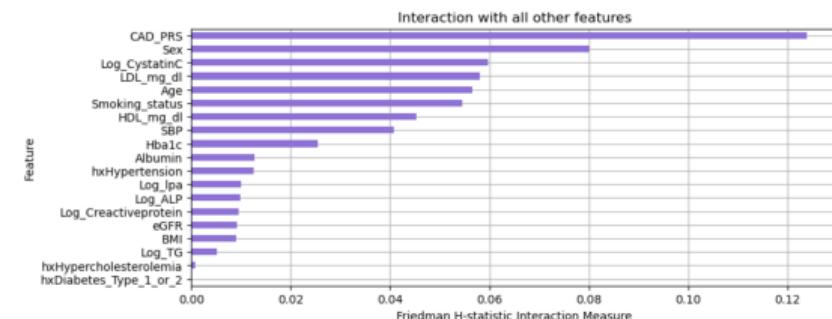
(b) XGBoost

Results: Friedman's H-statistic for total interactions

- The total interaction measure quantifies the extent to which a predictor interacts with all other predictors in the model



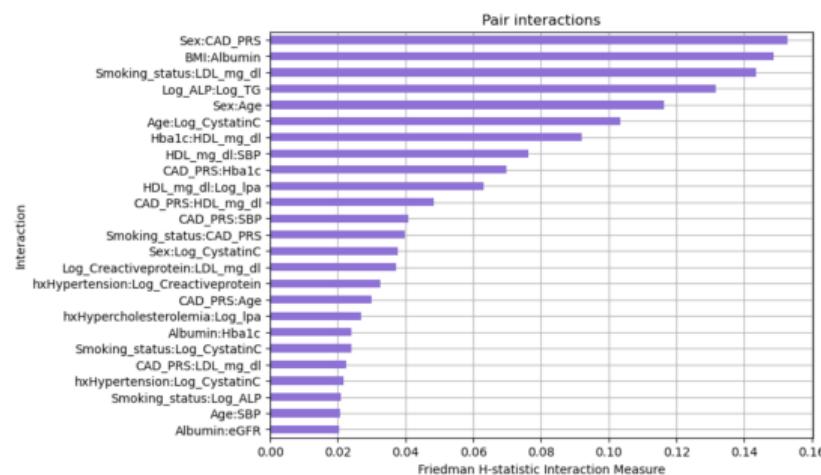
(a) LightGBM



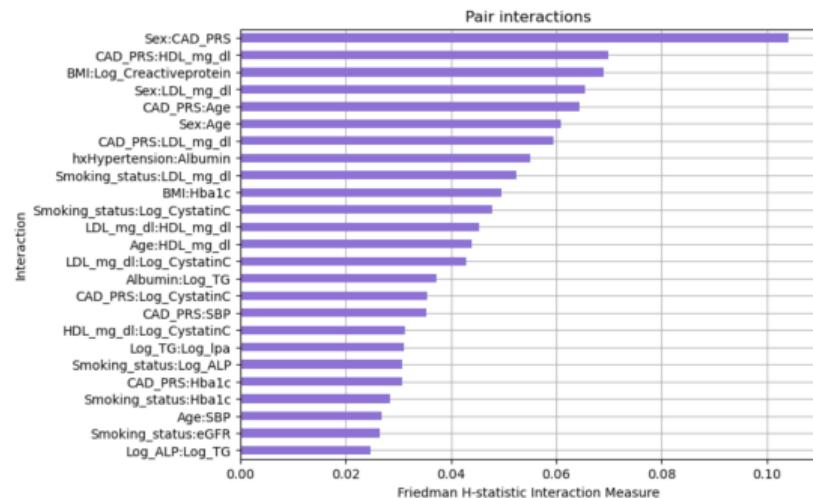
(b) XGBoost

Results: Friedman's H-statistic for pairwise interactions

- A pairwise interaction measure evaluates the presence and magnitude of interaction between two specific predictors within the model

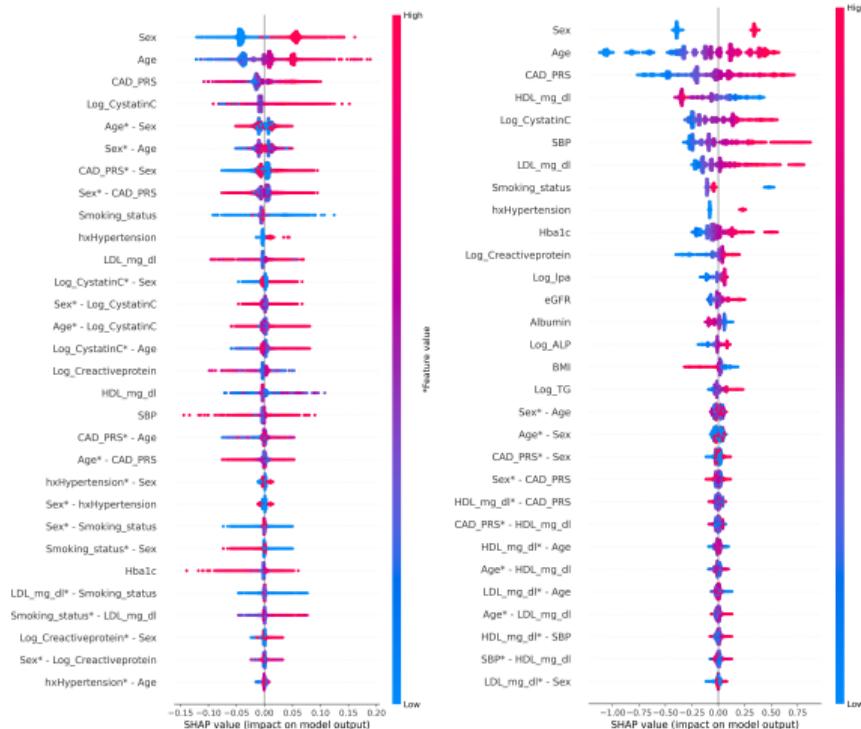


(a) LightGBM



(b) XGBoost

Results: Shapley additive explanations (SHAP) interaction values

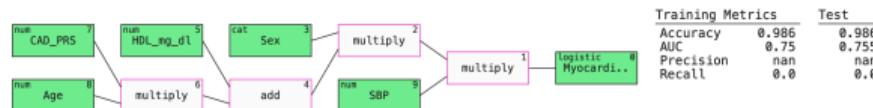


(a) LightGBM

(b) XGBoost

Results: Symbolic regression

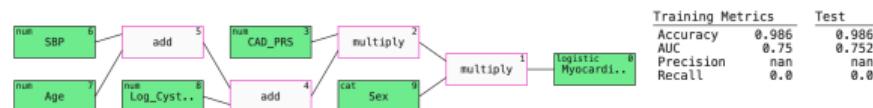
- Symbolic regression is an evolutionary algorithm-based technique that searches for the **optimal mathematical expression** to describe a given dataset by combining mathematical operators, variables, and constants, without assuming a predefined model structure



Inputs

- Age
- CAD_PRS
- HDL_mg_dl
- SBP
- Sex

(a) Best model from SR



Inputs

- Age
- CAD_PRS
- Log_CystatinC
- SBP
- Sex

(b) Second best model from SR