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Figure. H-statistics representing overall interactions and pairwise interactions as estimated by tree-based approaches in several simulated scenarios.
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CONCLUSIONS

» With larger sample size and/or larger interaction effect sizes, all methods can identify true/most important interaction effects. With a larger effect size (i.e., case 1), even with N=100,
both GBM and XGBoost still correctly identify the most important interaction effect (result not shown). Large sample sizes also reduce the risk of spurious interactions in the case of
high correlations (result not shown).

* With smaller effect sizes and sample sizes there is a higher chances of false positives (i.e., spurious interactions). In such cases, gradient boosting outperforms random forests.

* Well-trained and tuned ML approaches can distinguish true from spurious interactions in most settings. Next steps will focus on binary and time-to-event outcomes.
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